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TL,DR
We introduce Gen4D, an automated pipeline for synthesiz-
ing diverse, realistic 4D human animations, and use it to
build SportPAL, a large-scale synthetic sports dataset for
human-centric vision tasks.

MOTIVATION
Collecting diverse, high-quality human motion data in real-
world sports is costly and logistically difficult. While syn-
thetic datasets offer a promising alternative, most rely on
fixed 3D assets, and repetitive animations, resulting in lim-
ited diversity across appearance, motion, and viewpoint; ul-
timately restricting generalization to in-the-wild settings.

PROBLEM STATEMENT

Can we fully automate the synthesis of lifelike
human animation from raw motion to scene
synthesis without any manual 3D modeling?

KEY CONTRIBUTIONS
v Gen4D: A fully automated pipeline for synthesizing life-

like human avatars with realistic animations.
v SportPAL: A large-scale, richly annotated synthetic

dataset spanning baseball, ice hockey, and soccer, de-
signed for human-centric vision tasks.

THE PROPOSED METHOD: GEN4D
1. Motion Extraction: obtain motion representation from internet videos.
2. Canonical Human Gaussians: generates diverse human avatars via text-guided diffusion and Gaussian splatting in canon-

ical space.
3. Scene Composition: Animate avatars with motion, render from multiple viewpoints, and synthesize human-aware back-

grounds using diffusion-based scene generation.

A <Body Shape> 
<Ethnicity> baseball player of <Age> age

wearing a <Cloth Color> jersey with
<Cloth pattern> pattern and <Hair

Length> <Hair Type> <Hair Color> hair.
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PROMPT MODELING
v Uses text templates to guide avatar generation via dif-

fusion models.
v Captures diversity in appearance attributes like ethnic-

ity, body type, age, hair, and clothing.
v Attributes are combined programmatically to avoid

repetition and ensure balanced sampling.
v Enables generation of highly varied and realistic hu-

man avatars without manual asset design.

SPORTPAL
v Includes 583K+ synthetic frames across baseball, ice

hockey, and soccer.
v Rich annotations: 2D/3D poses, SMPLX parameters,

bounding boxes, and action labels.
v Built from 50 unique subjects with varied ethnicity,

body types, clothing, and viewpoints.

SportPAL dataset split

Sport Split #Subjects #Clips #Frames

Baseball

Train 15 1,000 253,869
Valid 15 304 80,810
Test 5 300 71,875

Icehockey

Train 10 195 75,468
Valid 10 50 18,867
Test 5 12 7,487

Soccer

Train 10 116 57110
Valid 10 30 14,277
Test 5 5 3639

Total - 50 2,012 583,403

QUANTITATIVE RESULTS

Impact of fine-tuning with cross-domain sports

Sport Method AP5↑ AP10↑ AP15↑

Icehockey
w/o finetuning 62.75 96.92 99.91
w/ finetuning 63.47 98.10 99.98

(+0.72) (+1.18) (+0.07)

Soccer
w/o finetuning 67.28 92.56 98.51
w/ finetuning 71.46 94.68 99.13

(+4.18) (+2.12) (+0.62)

QUALITATIVE RESULTS

(a) Examples of 3D canonical avatar representations; (b) Final rasterized synthetic frames with avatar animation and pose-
aware backgrounds; (c) Qualitative visualizations of pose estimation results trained on SportPaL using TokenPose [1].
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