

TL,DR

We introduce **Gen4D**, an automated pipeline for synthesizing diverse, realistic 4D human animations, and use it to build SportPAL, a large-scale synthetic sports dataset for human-centric vision tasks.

MOTIVATION

Collecting diverse, high-quality human motion data in realworld sports is costly and logistically difficult. While **syn**thetic datasets offer a promising alternative, most rely on fixed 3D assets, and repetitive animations, resulting in limited diversity across appearance, motion, and viewpoint; ultimately restricting generalization to in-the-wild settings.

PROBLEM STATEMENT

Can we fully automate the synthesis of lifelike human animation from raw motion to scene synthesis without any manual 3D modeling?

KEY CONTRIBUTIONS

- ✤ Gen4D: A fully automated pipeline for synthesizing lifelike human avatars with realistic animations.
- SportPAL: A large-scale, richly annotated synthetic dataset spanning baseball, ice hockey, and soccer, designed for human-centric vision tasks.

PROMPT MODELING

- Uses text templates to guide avatar generation via diffusion models.
- Captures diversity in appearance attributes like ethnicity, body type, age, hair, and clothing.
- Attributes are combined programmatically to avoid repetition and ensure balanced sampling.
- Enables generation of highly varied and realistic human avatars without manual asset design.

Attributes:	Prompt Template:
Ethnicity:	American Asian African Indian · · · · Mexican> African>
Body Shape:	Slim Athletic Muscular Fat Slim A Body Shape
Age:	Teenager Mid-aged Old Teenager> Ethnicity baseball
2	Fill in player of Age age
Cloth Color:	Black Red White Yellow ···· Teal ···· Yellow ··· wearing a Cloth Color
Cloth Pattern:	Solid Stripes Checks Floral · · · · Dots - · · · Checks - · · jersey with Cloth
Hair Color:	Black Brown Red Grey Bronze Grey Fill in pattern and
Hair Trace	Straight Curly, Wavy Kinky Curly Hair Length Hair Type
Hair Type:	Straight Curly Wavy Kinky Curly> Hair Color hair.
Hair Length:	Short Medium Long> Medium ->
Generated Avatar:	

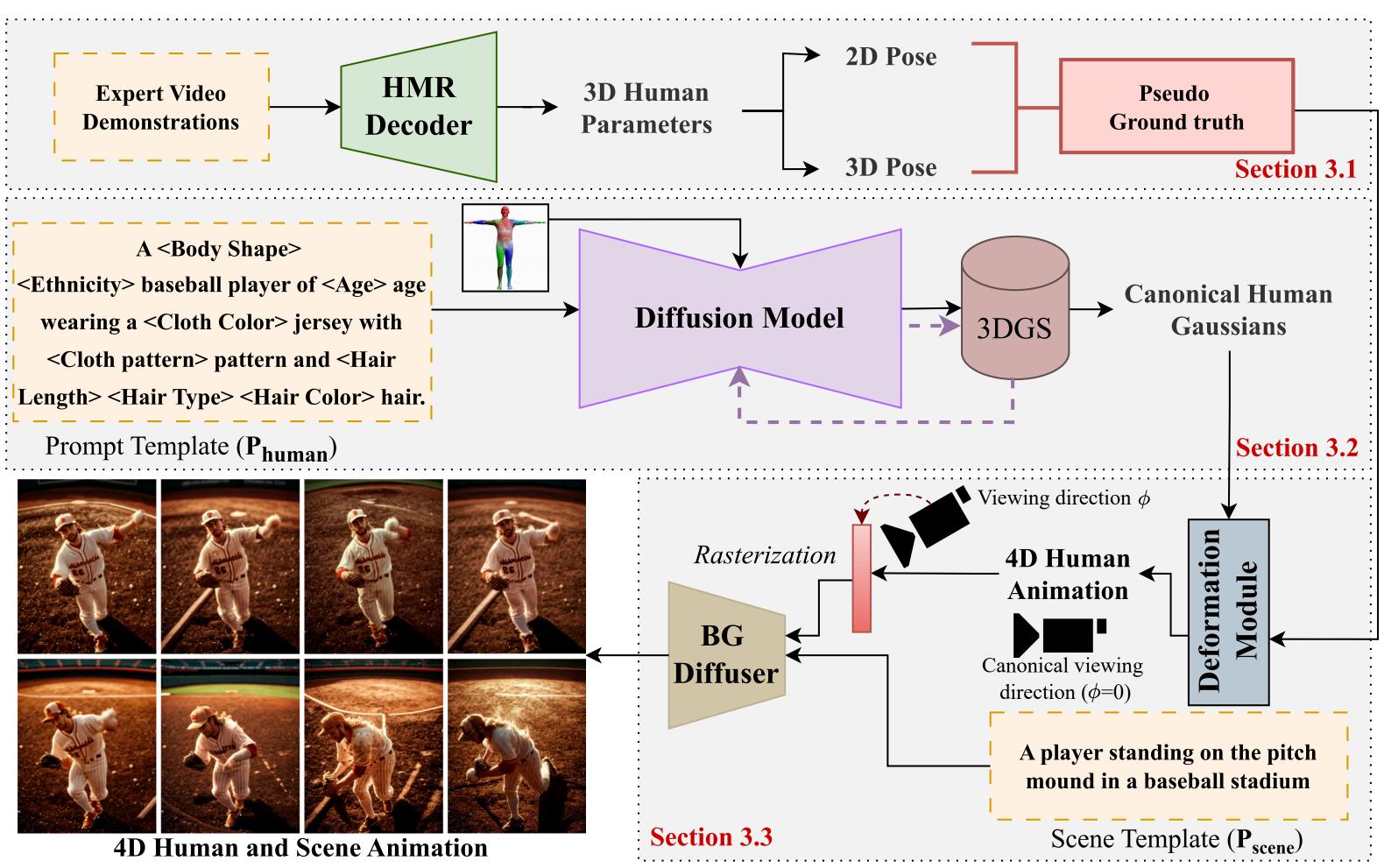
GEN4D: SYNTHESIZING HUMANS AND SCENES IN THE WILD

JERRIN BRIGHT, ZHIBO WANG, YUHAO CHEN, SIRISHA RAMBHATLA, DAVID CLAUSI, JOHN ZELEK

UNIVERSITY OF WATERLOO, WATERLOO, ONTARIO, CANADA

THE PROPOSED METHOD: GEN4D

- Motion Extraction: obtain motion representation from internet videos.
- Canonical Human Gaussians: generates diverse human avatars via text-guided diffusion and Gaussian splatting in canonical space.
- Scene Composition: Animate avatars with motion, render from multiple viewpoints, and synthesize human-aware backgrounds using diffusion-based scene generation.



QUALITATIVE RESULTS

(b)

(a) Examples of 3D canonical avatar representations; (b) Final rasterized synthetic frames with avatar animation and poseaware backgrounds; (c) Qualitative visualizations of pose estimation results trained on SportPaL using TokenPose [1].

SPORTPAL

Spor

Base

Iceho

Socce

Tota

Sport

Icehock

Soccer

REFERENCES

[1] Yanjie Li, Shoukui Zhang, Zhicheng Wang, and et al. Tokenpose: Learning keypoint tokens for human pose estimation. In Proceedings of the IEEE/CVF International Conference on Computer *Vision*, pages 11313–11322, 2021.

Includes 583K+ synthetic frames across baseball, ice hockey, and soccer.

✤ Rich annotations: 2D/3D poses, SMPLX parameters, bounding boxes, and action labels.

Built from 50 unique subjects with varied ethnicity, body types, clothing, and viewpoints.

rt	Split	#Subjects	#Clips	#Frames
	Train	15	1,000	253,869
eball	Valid	15	304	80,810
	Test	5	300	71,875
	Train	10	195	75,468
lockey	Valid	10	50	18,867
	Test	5	12	7,487
	Train	10	116	57110
cer	Valid	10	30	14,277
	Test	5	5	3639
al	-	50	2,012	583,403

SportPAL dataset split

QUANTITATIVE RESULTS

Impact of fine-tuning with cross-domain sports

	Method	AP ⁵ ↑	AP ¹⁰ ↑	AP^{15}
key	w/o finetuning w/ finetuning	62.75 63.47 (+0.72)	96.92 98.10 (+1.18)	99.91 99.98 (+0.07)
	w/o finetuning w/ finetuning	67.28 71.46 (+4.18)	92.56 94.68 (+2.12)	98.51 99.13 (+0.62)

