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Motivation

. Analysis from kinematic information.

. Performance optimization, injury prevention,
quantitative analysis of the player mechanics.
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Prior Research on Baseball Analysis

. Pre-recorded baseball databases (Pitch f/x).

. Controlled environments (MoCap Systems). 4
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Self-Occlusion

Motion Blur

Out-of-distribution
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B
Objective

""Enable detailed analysis of pitcher dynamics from human
models in 3D extracted solely from monocular broadcast feeds"
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High-level Workflow of PitcherNet
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https://youtu.be/wKBOtDPPxws
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Background

3D Human Modeling - SMPL
. Skinned Multi-Person Linear modell1l.

- 72 joint and 10 shape parameters -> 6890 vertices.
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Credits:
[1] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black. SMPL: a
skinned multi-person linear model. ACM Transactions on Graphics, 2015.
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PitcherNet System

Role

' Classification
Network

Pitcher Tracklet
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Broadcast Player Detection Player Tracklets
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Role Classification

Decouples action from player kinematics.
o Input: Pseudo-pose from estimated tracklets.

o Output: Player role.

Invariant to viewpoint/ facial features/
player jersey numbers.
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3D Human Model

. Distribution and depth
aware 3D modeling [2].

- Motion blur and in-the-

wild data augmentation.

. Generalizable, reliable
3D human models.

[2] Jerrin Bright, Bavesh Balaji, Harish Prakash, Yuhao Chen, David A Clausi, and John
Zelek. 2024. Distribution and Depth-Aware Transformers for 3D Human Mesh Recovery.
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Pitch Analysis

Pitch Position
PP(windup, set) = o(TCN (X))
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Pitch Analysis

- Release Point
Pre; = argmazx(v(i)|i € [Py —n/2, Py, +n/2])

Point A- Arm Cocking
Point B- Arm Deceleration

Point B

Maximum Foot Maximum Maximum \ ;
Events: knee height contact external rotation Ball release internal rotation ﬁ“'”““*x*.u“,“_ £
Phases: Stride Arm cocking Arm acceleration Arm deceleration b v
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6 phases of pitching action Trajectory of the right wrist joint in 3D space
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Pitch Analysis

Pitch Velocity
jfuf—l)) X T} X [
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Release Extension
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MLBPitchDB Dataset

Camera Calibration
What we have? What is Hawk-Eye Camera System? —
. 1000+ games . Triangulation with many cameras around
3D Hawk-Eye pose data the playing area
. Various pitch metrics - Applications include pose estimation,
tracking, etc. ¥
2 ¥

3D position of ball
Track of the ball

¥
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Quantitative Results of Role Classification

Table 11. Comparison with jersey identification techniques

Test Accuracy 1

Table I. Comparison with baselines

Test Accuracy 7 G.erke etal.|21] 64.47

L1 et al. [30] 88.29

LSTM 83.33 Vats et al. [48] 89.46
Transformer 91.11 Balaji ef al. [2] 93 68
Ours 96.66 Balaj1 ef al. [3] 94.70
Ours 96.82
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Quantitative Results of 3D Human Modeling

Table 1. Comparison of D2AHMR 3D model

Method Human3.6M 3DPW
mPJPE PA-mPJPE | mPJPE PA-mPJPE

HMMR’19 - 58.1 116.5 72.6
TCMR’21 62.3 41.1 95.0 55.8
VIBE20 65.6 414 93.5 56.5
SPIN"21 62.5 41.1 96.9 59.2
PyMAF21 57.7 40.5 92.8 58.9
ROMP’21 - - 105.6 53.5
HMREFT'20 63.2 43.8 85.1 52.2
PARE21 76.8 50.6 82.0 50.9
ProHMR'21 - 41.2 95.1 59.5
P2M’"20 64.9 47.0 89.2 58.9
METRO21 54.0 36.7 771 479
Ours 53.2 35.9 78.7 46.9
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Quantitative Results of Pitch Analysis

Table IV. Performance of our pitch statistics modules

(a) Handedness (b) Pitch Position
Accuracy T F1 Score T Precision 1 Accuracy T FI1 Score T Precision 1
LSTM 835.0 85.7 90.0 LSTM 81.3 82.5 85.0
Ours (TCN) 100.0 100.0 100.0 Ours (TCN) 97.5 974 95.0
(c) Release Point (d) Pitch Velocity (e) Release Extension
At At A5 At T Aoy T Asy 1 As T Ase T Awon T
LSTM 313 464 63.5 LSTM 5.1 13.1 22.2 LSTM 4.0 7.1 11.1
TCN 434 515 77.6 TCN 10.1 18.1 48.4 TCN 14.1 19.1 25.2
Ours 80.8 858 979 Ours 43.4 68.6 94.9 Ours 24.2 31.3 37.3
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Qualitative Results (3D Human Model)



https://www.youtube.com/watch?v=TsA6bOcaaiU

is)

Qualitative Results (Pitch Analy

P Pitch Hand | Pred: Left | GT: Left
Pitch Position | Pred: Stretch | GT: Stretch
Pitch Velocity | Pred: 90.48 Mph | GT: 87.58 Mph
Release Point | Pred: 90 | GT:90
Extension | Pred: 5.85 feet | GT: 6.13 feet
Pitch Hand | Pred: Lefl | GT: Left
Pitch Position | Pred: Windup | GT: Windup
Pitch Velocity | Pred: 85.76 Mph | GT: 89.17 Mph
Release Point | Pred: 88 | GT: 89
Extension | Pred: 6.01 feet | GT: 6.16 feet
Pitch Hand | Pred: Right | GT: Right
Pitch Position | Pred: Windup | GT: Windup
Pitch Velocity | Pred: 85.46 Mph | GT: 85.65 Mph
Release Point | Pred: 87 | GT: 87
Extension | Pred;: 6.17 feet | GT: 6.11 fect
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Summary

Reliable pitch analysis driven by player kinematics and human model priors.
Role classification aiming to classify players by decoupling actions.

D2A-HMR v2 which improves 3D human modeling in degraded image quality.
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Thank you!

Supported by:
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