PitcherNet: Powering the Moneyball Evolution in Baseball Video Analytics

Jerrin Bright, Bavesh Balaji, Yuhao Chen, David Clausi and John Zelek

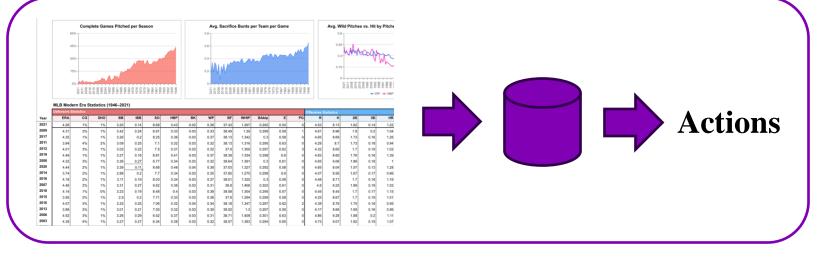
Vision and Image Processing Lab

Department of Systems Design Engineering University of Waterloo, Waterloo, ON, Canada

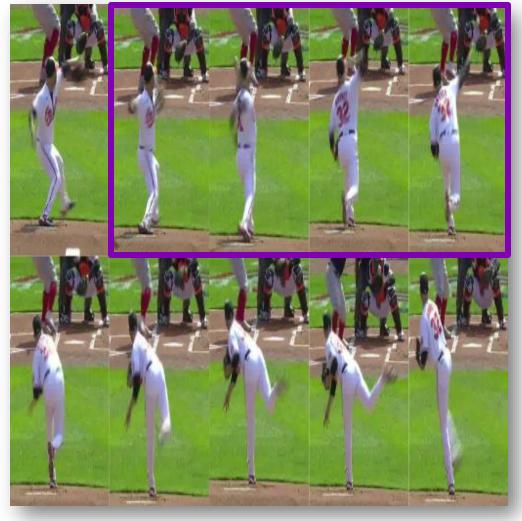
Date: Tuesday, June 18th, 2024

Motivation

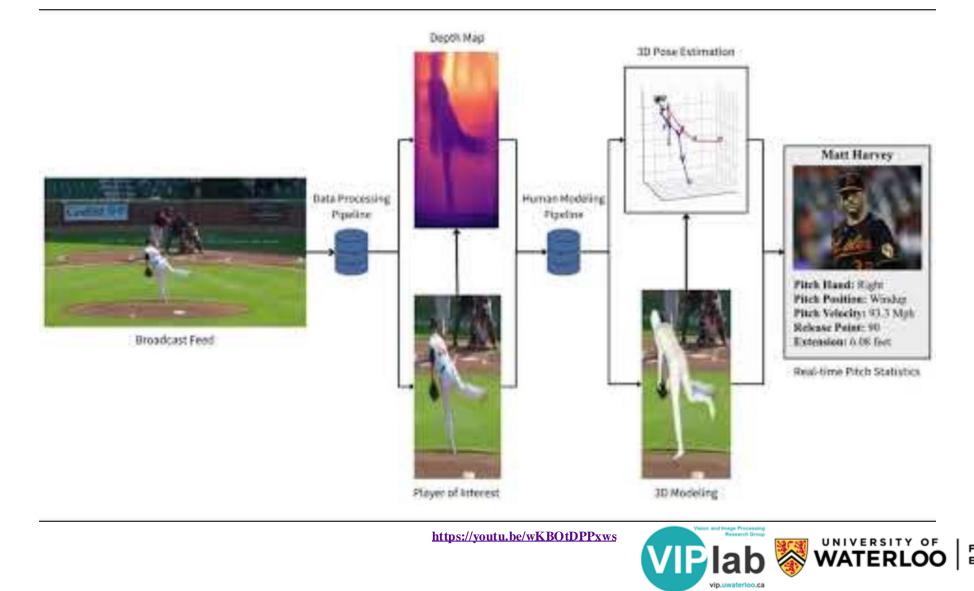
- Analysis from kinematic information.
- Performance optimization, injury prevention, quantitative analysis of the player mechanics.



Prior Research on Baseball Analysis

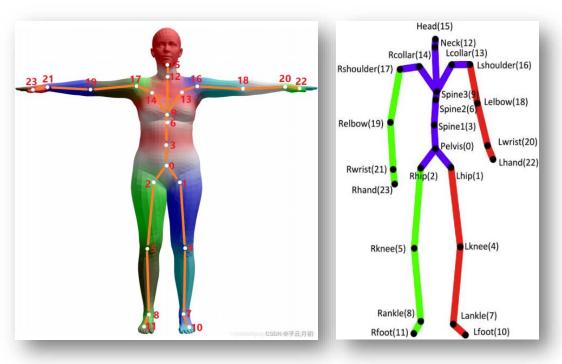

- Pre-recorded baseball databases (Pitch f/x).
- Controlled environments (MoCap Systems).

Challenges with Video Inputs

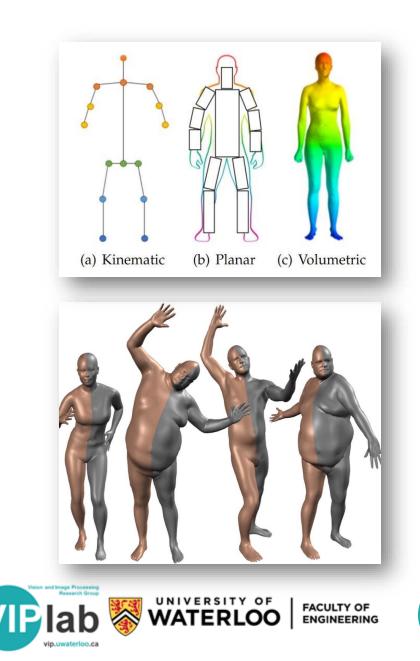

Motion Blur

Objective

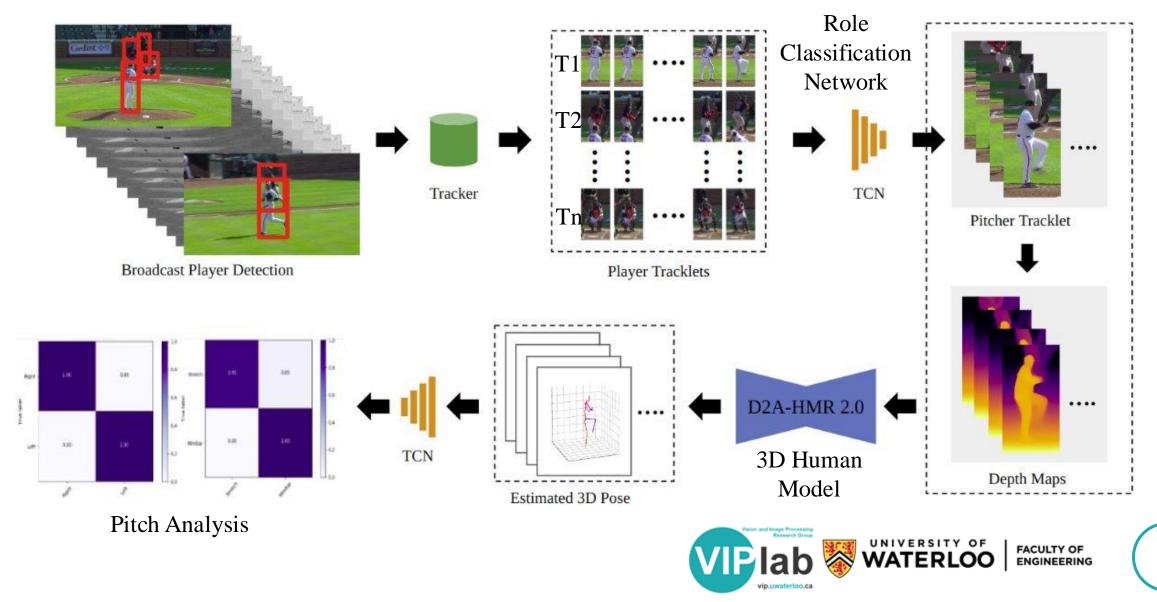
"Enable detailed analysis of pitcher dynamics from human models in 3D extracted solely from monocular broadcast feeds"


High-level Workflow of PitcherNet

Background

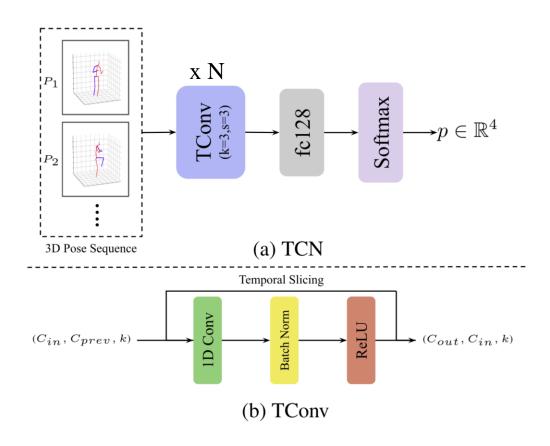

3D Human Modeling - SMPL

- Skinned Multi-Person Linear model^[1].
- 72 joint and 10 shape parameters -> 6890 vertices.



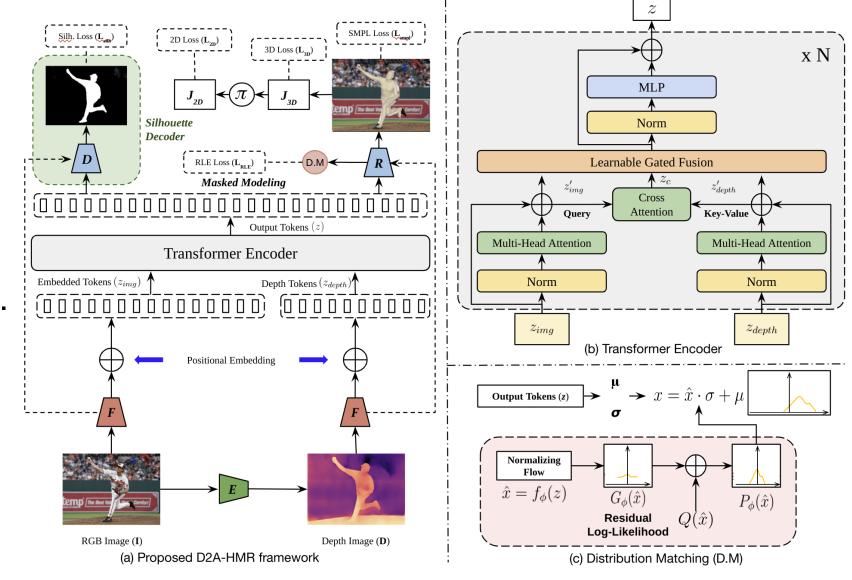
Credits:

[1] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black. SMPL: a skinned multi-person linear model. ACM Transactions on Graphics, 2015.


PitcherNet System

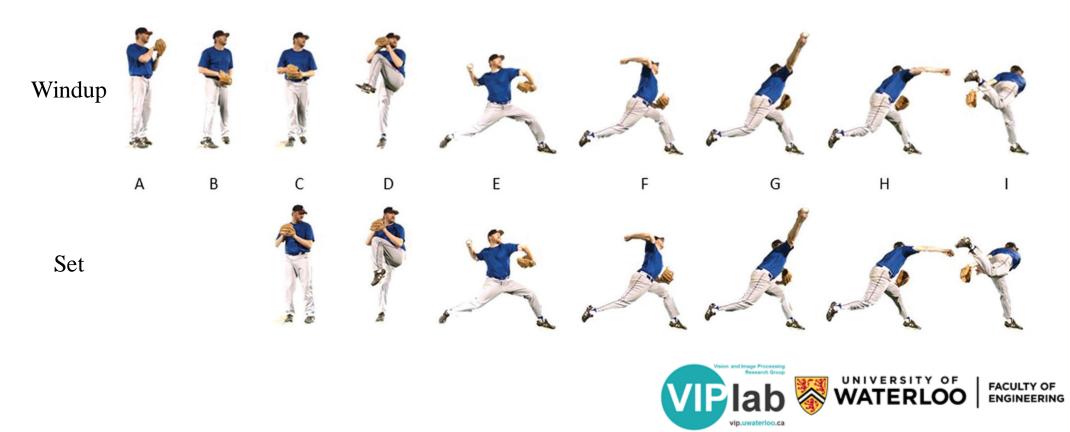
8

Role Classification


- Decouples action from player kinematics.
 - Input: Pseudo-pose from estimated tracklets.
 - Output: Player role.
- Invariant to viewpoint/ facial features/ player jersey numbers.

3D Human Model

- Distribution and depth aware 3D modeling [2].
- Motion blur and in-thewild data augmentation.
- Generalizable, reliable
 3D human models.

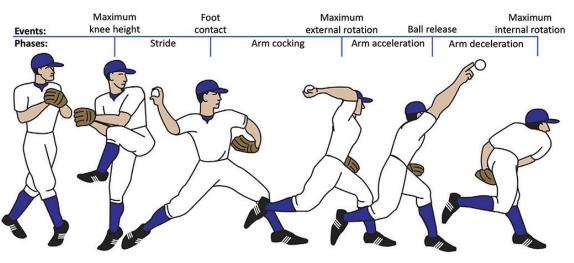

[2] **Jerrin Bright**, Bavesh Balaji, Harish Prakash, Yuhao Chen, David A Clausi, and John Zelek. 2024. Distribution and Depth-Aware Transformers for 3D Human Mesh Recovery. In 21st Conference on Robots and Vision - ORAL

10

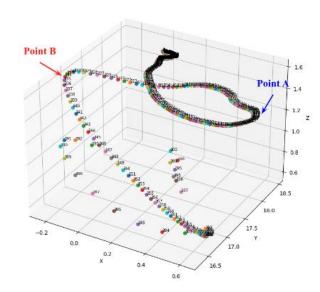
Pitch Analysis

Pitch Position

 $PP(windup, set) = \sigma(TCN(X))$



Pitch Analysis


Release Point

$$P_{rel} = argmax(v(i)|i \in [P_b - n/2, P_b + n/2])$$

Point A- Arm Cocking **Point B-** Arm Deceleration

6 phases of pitching action

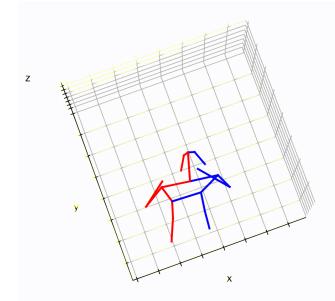
Trajectory of the right wrist joint in 3D space

Pitch Analysis

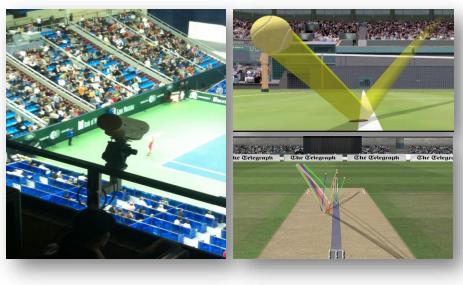
Pitch Velocity

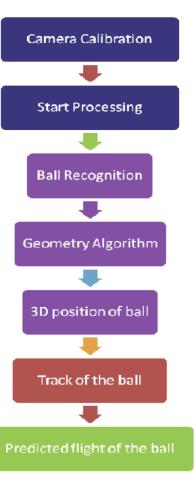
$$v_p = \omega \times l = \{(atan(w_y^r, w_x^r) - atan(w_y^{r-1}, w_x^{r-1})) \times T\} \times l$$

Release Extension


$$E_{rel} = \sqrt{(w_x - a_x)^2 + (w_y - a_y)^2 + (w_z - a_z)^2}$$

MLBPitchDB Dataset


What we have?


- 1000+ games
- 3D Hawk-Eye pose data
- Various pitch metrics

What is Hawk-Eye Camera System?

- Triangulation with many cameras around the playing area
- Applications include pose estimation, tracking, etc.

Quantitative Results of Role Classification

Table I. Comp	arison with baselines		Test Accuracy ↑
1	Test Accuracy ↑	Gerke <i>et al</i> . [21] Li <i>et al</i> . [30]	64.47 88.29
M sformer	85.55 91.11	Vats $et al. [50]$ Balaji $et al. [2]$	89.46 93.68
5	96.66	Balaji <i>et al</i> . [3]	94.70
		Ours	96.82

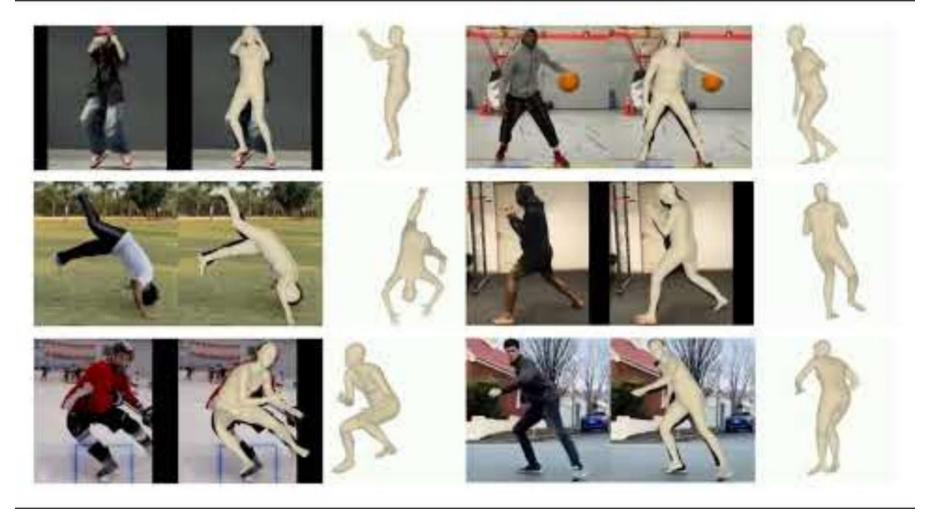
Table II. Comparison with jersey identification techniques

Ours	96.66
Transformer	91.11
LSTM	85.55
	Test Accuracy ↑

Quantitative Results of 3D Human Modeling

Method	Hun	nan3.6M	3DPW		
	mPJPE	mPJPE PA-mPJPE		PA-mPJPE	
HMMR'19	-	58.1	116.5	72.6	
TCMR'21	62.3	41.1	95.0	55.8	
VIBE'20	65.6	41.4	93.5	56.5	
SPIN'21	62.5	41.1	96.9	59.2	
PyMAF'21	57.7	40.5	92.8	58.9	
ROMP'21	-	-	105.6	53.5	
HMREFT'20	63.2	43.8	85.1	52.2	
PARE'21	76.8	50.6	82.0	50.9	
ProHMR'21	-	41.2	95.1	59.5	
P2M'20	64.9	47.0	89.2	58.9	
METRO'21	54.0	36.7	77.1	47.9	
Ours	53.2	35.9	78.7	46.9	

Table III. Comparison of D2AHMR 3D model


Quantitative Results of Pitch Analysis

	(a) Handedness					(b) Pitch Position						
		Acc	uracy \uparrow	F1 Score ↑	Precisio	$n\uparrow$		Accuracy ↑	F1 Sco	ore \uparrow F	Precision \uparrow	
	LSTM 85.0 Ours (TCN) 100.0			85.790.0100.0100.0			STM Durs (TCN)	81.3 97.5	82.5 97.4		85.0 95.0	
	(c) Releas	e Point			(d) Pitch	Velocity	7		(e) Releas	se Extensi	on	
	$A_1 \uparrow$	$A_2 \uparrow$	$A_5 \uparrow$		$A_{1\%}\uparrow$	$A_{2\%}$?	$\uparrow A_{5\%} \uparrow$		$A_{5\%}\uparrow$	$A_{8\%}$ 1	$A_{10\%}\uparrow$	
LSTM TCN Ours	31.3 43.4 80.8	46.4 51.5 85.8	63.5 77.6 97.9	LSTM TCN Ours	5.1 10.1 43.4	13.1 18.1 68.6	22.2 48.4 94.9	LSTM TCN Ours	4.0 14.1 24.2	7.1 19.1 31.3	11.1 25.2 37.3	

 Table IV. Performance of our pitch statistics modules

Qualitative Results (3D Human Model)

https://www.youtube.com/watch?v=TsA6bOcaaiU

Qualitative Results (Pitch Analysis)

nen nanu	rreu. Lett	OI. Len
itch Position	Pred: Stretch	GT: Stretch
itch Velocity	Pred: 90.48 Mph	GT: 87.58 Mph
Release Point	Pred : 90	GT : 90
Extension	Pred: 5.85 feet	GT: 6.13 feet
Pitch Hand	Pred: Left	GT: Left
Pitch Position	Pred: Windup	GT: Windup

|GT Left

Pred: Left	GT: Left
Pred: Windup	GT: Windup
Pred: 85.76 Mph	GT: 89.17 Mph
Pred: 88	GT : 89
Pred: 6.01 feet	GT: 6.16 feet
	Pred: Windup Pred: 85.76 Mph Pred: 88

Pitch Hand	Pred: Right	GT: Right
Pitch Position	Pred: Windup	GT: Windup
Pitch Velocity	Pred: 85.46 Mph	GT: 85.65 Mph
Release Point	Pred: 87	GT : 87
Extension	Pred: 6.17 feet	GT: 6.11 feet

Summary

- Reliable pitch analysis driven by player kinematics and human model priors.
- Role classification aiming to classify players by decoupling actions.
- D2A-HMR v2 which improves 3D human modeling in degraded image quality.

Thank you!

Supported by:

