

KEY CONTRIBUTIONS

- A novel jersey number recognition network that utilizes MAEs coupled with a transformer decoder to capture robust features from low-resolution blurred tracklets.
- A new domain-guided masking strategy, termed *d*-MAE, specifically tailored to player identification, enhancing model robustness to motion blur.
- Refinement of the KfID module [1] by improving its jersey number localization and it's ability to capture fine-grained semantic representations of keyframes.
- Addressing the issue of limited data, we introduce a keyframe fusion technique to augment meaningful data, thereby enriching the training process.
- Validation of our model outperforming SOTA methods on three large-scale datasets spanning different sports.

QUALITATIVE RESULTS

Prediction: 24

Prediction: 24

Prediction: 24

Prediction: 33 Prediction: 33 Prediction: 33 Performance of our model on two different player tracklets from all three datasets. We find our model's prediction for each image separately and for the entire tracklet (Pred). GT represents the ground-truth value for the entire tracklet.

DOMAIN-GUIDED MASKED AUTOENCODERS FOR UNIQUE PLAYER IDENTIFICATION

BAVESH BALAJI, JERRIN BRIGHT, SIRISHA RAMBHATLA, YUHAO CHEN, ALEXANDER WONG, JOHN ZELEK AND DAVID CLAUSI UNIVERSITY OF WATERLOO, WATERLOO, ONTARIO, CANADA

LOSS FUNCTIONS

Siamese Loss:

$$\mathcal{L}_{\text{siamese}} = ||h(\hat{\mathbf{I}}) - h(\mathbf{I})||_1$$

Multi-head Classification Loss:

$$\mathcal{L}_{\text{class}} = -\sum_{i=0}^{10} y_1^i \log \hat{y}_1^i - \sum_{j=0}^{10} y_2^j \log \hat{y}_2^j \tag{2}$$

Backl ResN ResN ResN ViT-B ViT-B ViT-E

(1)

Comparison of our model with and without KfID

• Impact of feature extractors and metrics for $\mathcal{L}_{\text{siamese}}$

Feat VGC ResN Ince Alex

METHODOLOGY

Overall architecture. Given a tracklet \mathbb{T} consisting of N frames, we pass \mathbb{T} through the KfID module to extract $n \leq N$ keyframes that contain the jersey number. Each keyframe is passed as an input to our *d*-MAE encoder to extract spatial features \mathcal{F}_s . These features are then fed to the temporal transformer decoder to extract temporal features \mathcal{F}_{temp} . Two classification heads are utilized to compute the predicted digits of the jersey number \hat{y}_1 and \hat{y}_2 respectively.

ABLATION STUDY

Comparison with backbones and masking strategies

bone	Pretraining	Masking Strategy	Test Acc
et-18	×	_	58.62
et-34	×	_	61.29
et-152	×	_	65.10
}	\checkmark	Zeroing-Out	75.83
}	\checkmark	Gaussian Blur	76.47
3	\checkmark	Motion Blur	77.31

Dataset	Test Acc	Challenge Acc
Ice Hockey	61.71	-
Baseball	88.43	-
SoccerNet	35.65	35.98
Ice Hockey (†)	96.79 ↑35.08	-
Baseball (†)	94.70 ↑ 5. 73	_
SoccerNet (†)	$\textbf{77.31} \uparrow \textbf{41.66}$	$81.92 \uparrow 45.94$

Feature Extractor	ℓ_2 -loss	ℓ_1 -loss	Cosine Similarity
VGG	76.30	76.21	74.52
ResNet	76.45	77.31	74.90
InceptionNet	75.84	75.93	74.66
AlexNet	74.38	74.41	73.93

Method Gerke et al Vats et al Li et al Vats et al Balaji et al Ours ATATIM FTFA REFERENCES

QUANTITATIVE RESULTS

SoccerNet	Ice Hockey	Baseball
32.57	61.20	64.47
46.73	83.17	87.61
47.85	81.15	88.29
52.91	85.14	89.46
68.53	92.50	93.68
77.31	96.79	94.70

ACKNOWLEDGEMENT

[1] Bavesh Balaji, Jerrin Bright, Harish Prakash, Yuhao Chen, David A. Clausi, and John Zelek. Jersey number recognition using keyframe identification from low-resolution broadcast videos. In Proceedings of the 6th International Workshop on Multimedia Content Analysis in Sports, MMSports '23, 2023.