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MOTIVATION

• Jersey number recognition – Common approach for player 
identification.

• In-game analytics, enhanced broadcast experience.
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EXISTING WORKS

Detector

● Formulate as a classification 
problem.

○ Most methods operate on 
static images[1, 2]. 

■ Do not consider 
temporal aspect.

■ Datasets created in 
isolated environments.

○ Few works use tracklets[3, 4].

■ Consider temporal 
aspect. 

Temporal 
Classifier

Spatial 
Classifier
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LIMITATIONS

• Prone to motion blur & occlusions.

• Existing Spatial feature extractors are 

not robust.

• JN not visible in most frames.

Motion Blur Occlusion
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d-MAE

● Existing MAEs completely black-out random subset of image patches.

● We introduce motion blur artifacts on random patches.



               6  May 29 , 2024

OUR METHOD

The proposed approach comprises several key steps:

1. Keyframe Identification: Each input tracklet is passed through the KfID module which identifies keyframes that 
contain high-level context of the jersey number, and localizes it.

2. d-MAE: The extracted frames are then individually passed through our proposed d-MAE to extract the spatial 
features      of each keyframe.     

3. Temporal Transformer Decoder: The extracted spatial features      are passed through a transformer network to 
extract the temporal features           necessary to identify the jersey number reliably.
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LOSS FUNCTIONS

• MAE loss

– Reconstruction loss: 

– Siamese Loss:-

–  

• Multi-task classifier loss

–
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KfID MODULE
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KfID MODULE
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DATASETS
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RESULTS
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RESULTS
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ABLATION STUDIES
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ABLATION STUDY
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CONCLUSION

• Efficacy of our d-MAE Module: We demonstrate that incorporating our 
novel d-MAE module results in a performance boost of 12.21% increase on 
the SoccerNet test set.

• Significant Improvement on SOTA: We consistently outperform the 
existing state-of-the-art by ~8%, ~4% and ~1% on the SoccerNet, Ice 
Hockey and Baseball datasets respectively, underscoring the impact of 
motion blur in sports videos.
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WHY HSV?
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INITIAL MODEL

• An ensemble model of 2 MSPN networks

• One trained from scratch on 20 keypoints.

• Another one using a unique transfer learning approach to lift 17 to 
20 keypoints.
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Qualitative Results

Transfer Learning       

 

Training from Scratch Transfer Learning
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LIMITATIONS

The presence of multiple players in one single frame leads to unnecessary 
information in the image which confuses the input model.
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IMPROVED MODEL

• We tried to predict keypoints outside the image.

– Input image => player bounding box.

– Output:- player + stick keypoints(not present in input image).

• Now becomes a keypoint regression problem, instead of heatmap 

regression.
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ARCHITECTURE

Backbone

Keypoint features F

Lifting Encoder ~
Positional Encoding

+ Class Embedding

Self-Attn

MLP

RLE Loss
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QUALITATIVE RESULTS
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QUANTITATIVE RESULTS

• Comparison of our previous best vs current model

Ensemble Model Keypoint Regressor

Training Accuracy 98.69% 99.93%

Validation Accuracy 92.90% 87.38%



               25  May 29 , 2024

ADVANTAGES OF OUR MODEL

• Simple model to predict out-of-image keypoints.

• Can be leveraged for any domain consisting of body extensions, 

like lacrosse, shoveling, tennis etc.

• Avoids manual decoding of heatmaps and predicts keypoints 

directly.

• Showcases that the relationship between objects can be exploited 

to refine each other’s pose.
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PLAN OF ACTION

• Creating other datasets for generalizability.

• Exploring other ideas such as using segmentation masks to add 

more prior to the model.

• Adding other information such as the role of the 

player(defensemen, forwards etc).


