

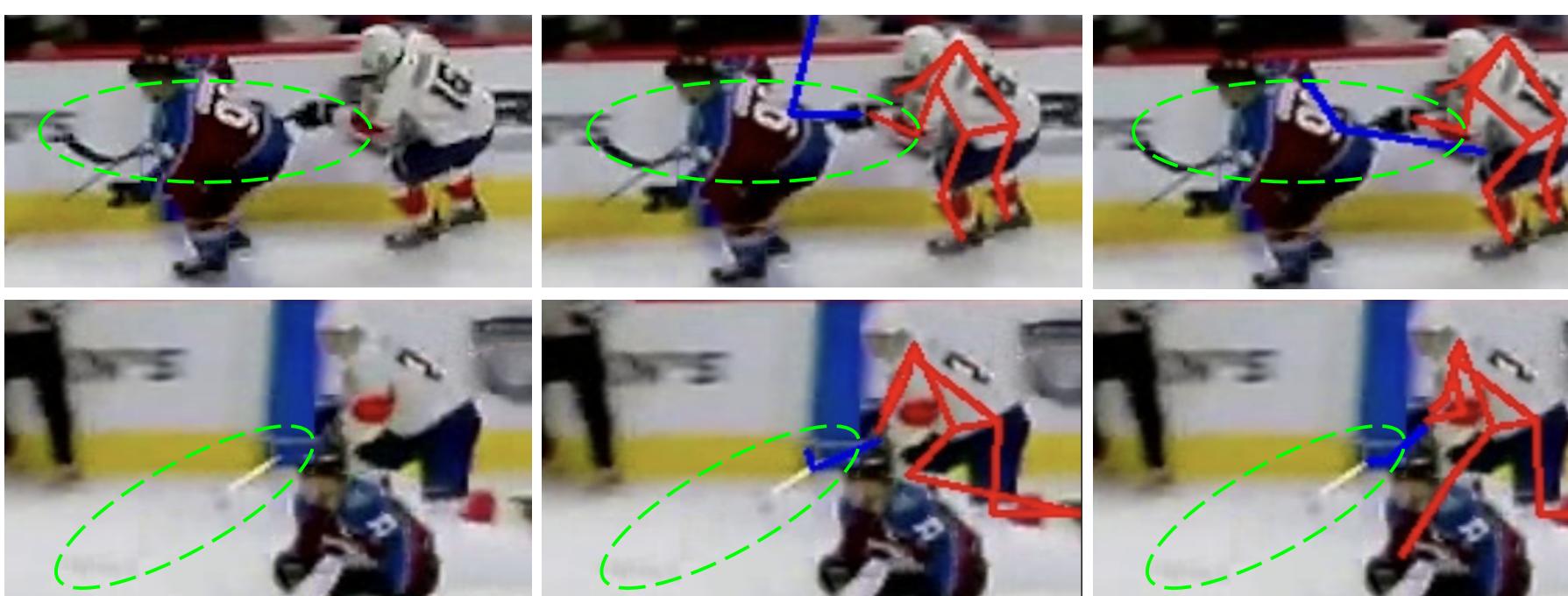
BAVESH BALAJI, JERRIN BRIGHT, SIRISHA RAMBHATLA, YUHAO CHEN,
JOHN ZELEK AND DAVID CLAUSI

PRELIMINARIES

- ❖ **Pose Estimation:** Given a monocular RGB image, we want to predict the 2D coordinates of human joints along with the object that they hold, *aka* extensions.
- ❖ **Top-down paradigm:** Isolate each entity by cropping them using bounding boxes, and then perform pose estimation individually.

MOTIVATION

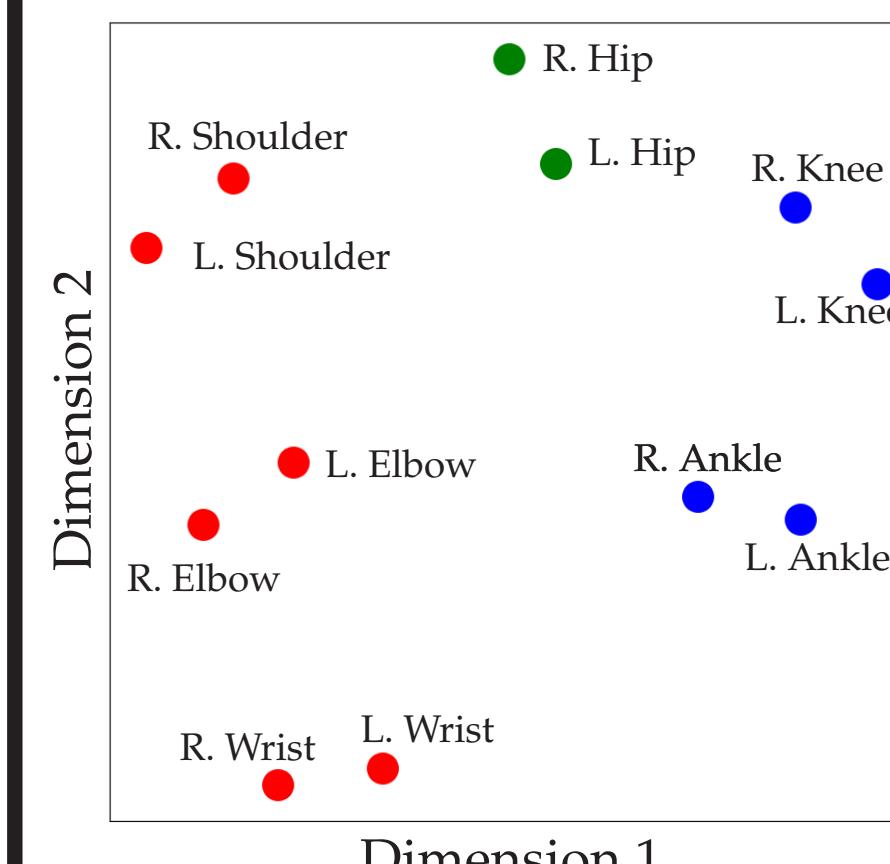
- ❖ Including the extension in the bounding box leads to the addition of **unnecessary visual features**!
 - ❖ Existing methods expect all keypoints of interest to be present in the bounding box.
 - ❖ This leads to larger bounding boxes, introducing noisy features that hinder performance.



- ❖ Given that the pose of the human and their extension are highly correlated (Yao *et al.* [1]), what if we **don't capture the extension** in the bounding box and still predict it?
- ❖ If so, how to inform the model about these *unseen* keypoints?

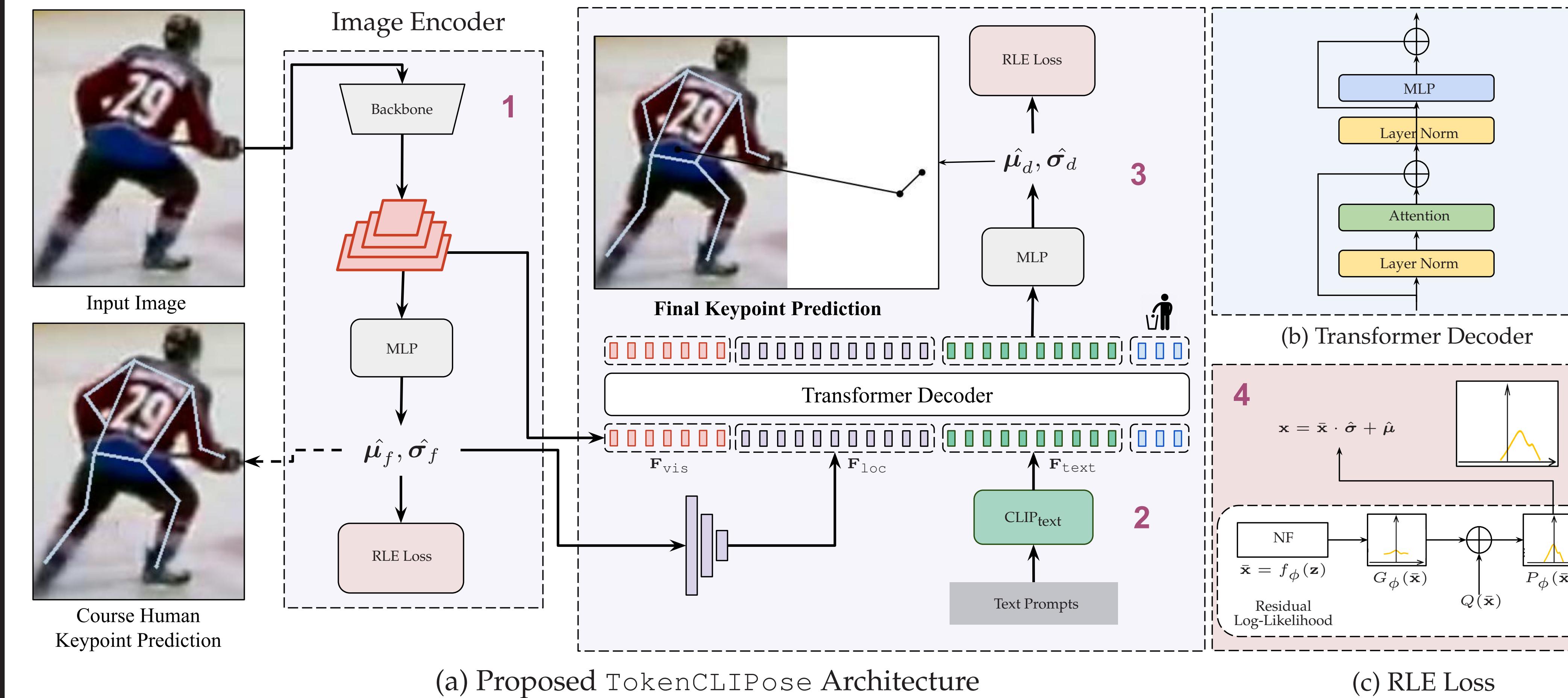
CONTRIBUTIONS

- ❖ Reformulate the extension pose estimation task as an unseen keypoint prediction problem.
- ❖ Utilize keypoint-specific text prompts to induce semantic context of unseen keypoints.



- ❖ Previous works align the learnable image embeddings to the frozen text embeddings.
- ❖ However, text embeddings do not maintain global positional structure.
- ❖ Initialize learnable keypoint tokens using these text embeddings and utilize a transformer to find the relationships between different joints.
- ❖ Introduce two first-of-its-kind datasets for extension pose estimation collected from real-world ice hockey and lacrosse games respectively.
- ❖ Outperform SOTA on our datasets and CrowdPose.

METHODOLOGY

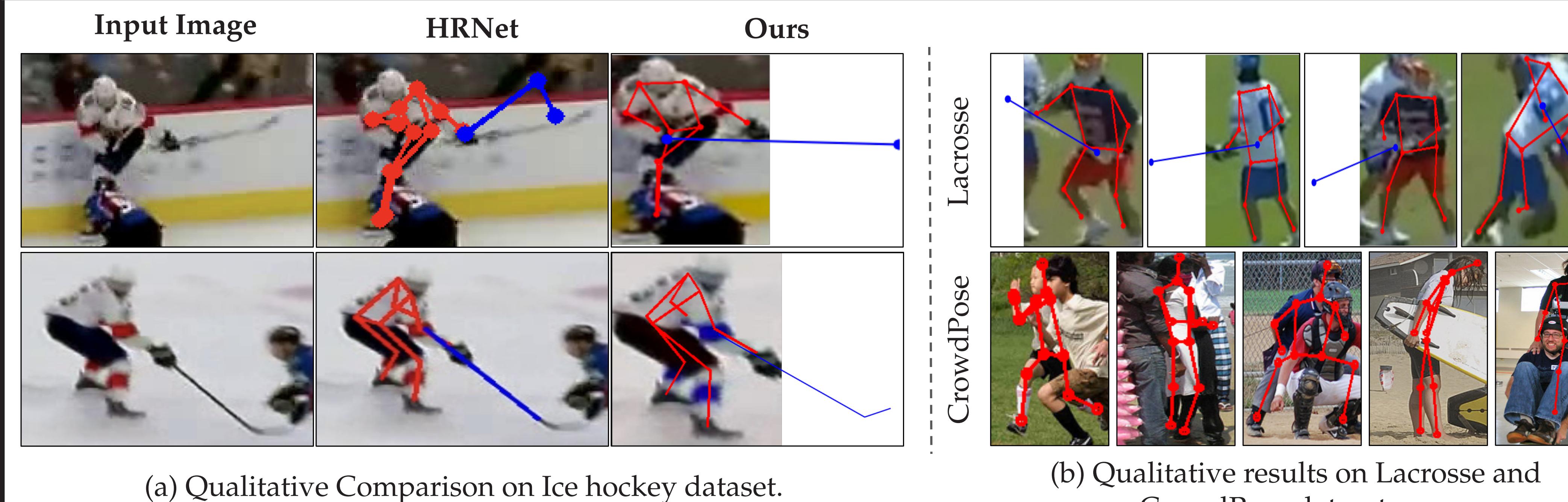


- (1) Initially, the cropped image that excludes the extension is passed through a backbone network to generate dense multi-scale visual features F_{vis} and coarse human keypoint locations F_{loc} .
- (2) Joint-specific text prompts are used to generate text embeddings for each keypoint. Learnable keypoint tokens for each joint F_{text} are then initialized using these text embeddings.
- (3) The image, location and text features are fed to a standard transformer layer which outputs the final predictions.
- (4) We use **residual log-likelihood loss** to make our model more robust to noisy keypoints.
 - ❖ We formulate regression task as a distribution learning problem and adopt MLE.
 - ❖ We leverage normalizing flows to learn how the output deviates from the ground truth and minimize it.

$$\text{RLE Loss: } \mathcal{L}_{RLE} = -\log P_{\Theta, \phi}(\mathbf{x}|\mathcal{I}) \Big|_{\mathbf{x}=\mu_g} = -\log P_{\phi}(\bar{\mu}_g) + \log \hat{\sigma} = -\log Q(\bar{\mu}_g) - \log G_{\phi}(\bar{\mu}_g) - \log s + \log \hat{\sigma}.$$

$$\text{Total Loss: } \mathcal{L} = \mathcal{L}_{RLE}^f + \mathcal{L}_{RLE}^d, \text{ where } \mathcal{L}_{RLE}^f = -\log P_{\Theta_f, \Phi_f}(\mathbf{x}|\mathcal{I}) \Big|_{\mathbf{x}=\mu_g} \text{ and } \mathcal{L}_{RLE}^d = -\log P_{\Theta_d, \Phi_d}(\mathbf{x}|\mathcal{I}) \Big|_{\mathbf{x}=\mu_g}$$

QUALITATIVE RESULTS



QUANTITATIVE RESULTS

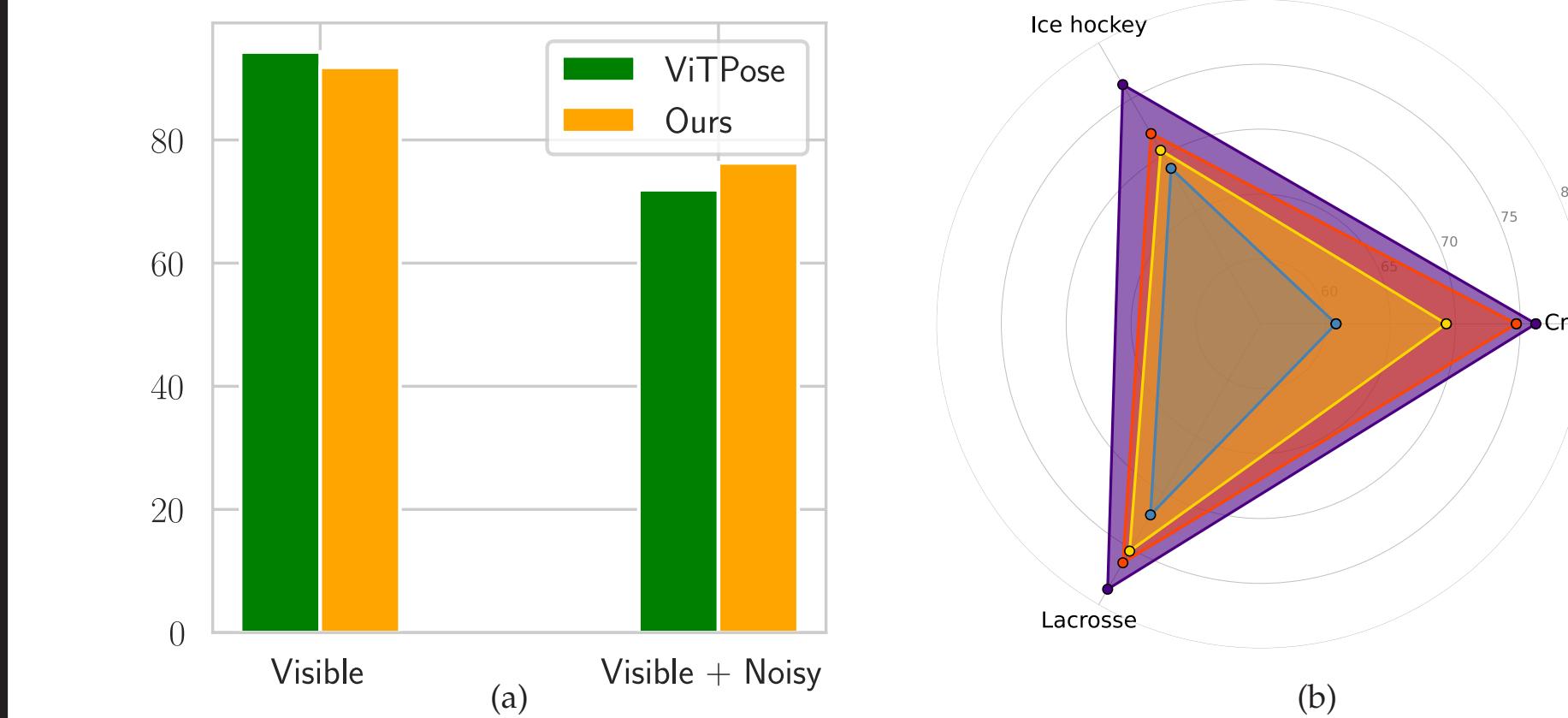
- ❖ PCKh@0.5 for joint hockey player and stick pose estimation.

Method	Backbone	Input Resolution	Body	Butt End	Stick Heel	Stick Toe	Mean
SimpleBaseline	ResNet-50	256x192	93.59	69.57	57.19	52.76	68.83
MSPN	-	256x192	93.61	70.30	59.21	55.69	69.70
HR-Net	HRNet-W48	256x192	94.90	71.48	60.29	55.36	70.44
TokenPose-L/D24	HRNet-W48	256x192	95.13	70.96	60.93	56.27	70.82
ViTPose	ViT-B	256x192	95.61	71.94	61.33	58.80	71.92
TokenCLIPose	ResNet-50	256x192	95.81	74.86	65.79	65.08	74.92
TokenCLIPose	MSPN	256x192	97.17	75.41	66.70	66.34	75.53
TokenCLIPose	HRNet-W48	256x192	97.37	75.94	67.82	66.15	76.28
Improvement	-	-	1.76% ↑	4.00% ↑	6.49% ↑	7.35% ↑	4.36% ↑

- ❖ Zero-shot results for Lacrosse.

Method	Backbone	Body	Butt End	Stick Heel	Mean
SimpleBaseline	ResNet-50	94.73	67.28	53.99	72.00
MSPN	-	95.84	70.68	57.40	74.64
HR-Net	HRNet-W48	95.92	71.35	58.41	75.22
ViTPose	ViT-B	95.77	72.85	60.18	76.26
TokenCLIPose	HRNet-W48	97.24	76.60	65.01	78.61
Improvement	-	1.47% ↑	3.75% ↑	4.83% ↑	2.35% ↑

We achieve **4.36%** and **2.35%** improvement on our two datasets. Significant improvement on stick joints (**4%** and **6.49%**)!



(a) We significantly improve the prediction of noisy keypoints. (b) This also translates to standard occlusion datasets like CrowdPose where we outperform SOTA top-down methods.

ACKNOWLEDGEMENT

Paper Preprint:

REFERENCES

[1] Bangpeng Yao and Li Fei-Fei. Modeling mutual context of object and human pose in human-object interaction activities. 2010 *IEEE Computer Society Conference on Computer Vision and Pattern Recognition*, pages 17–24, 2010.