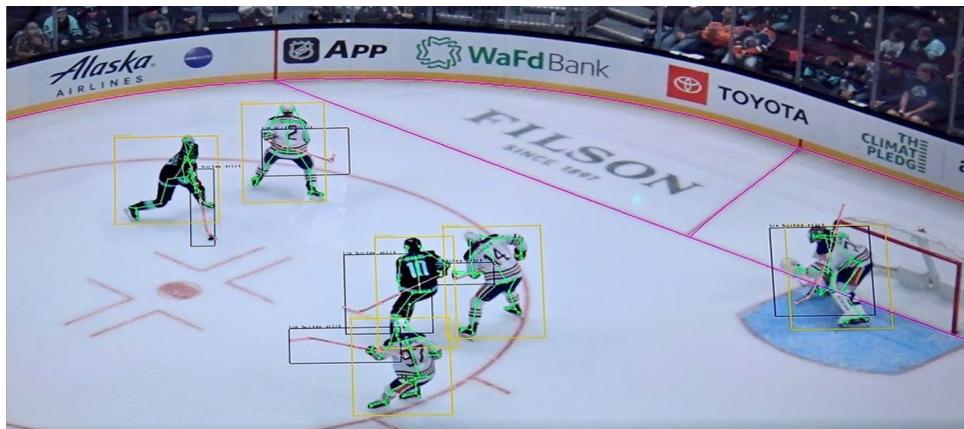


Seeing Beyond the Crop: Using Language Priors for Out-of-Bounding Box Keypoint Prediction

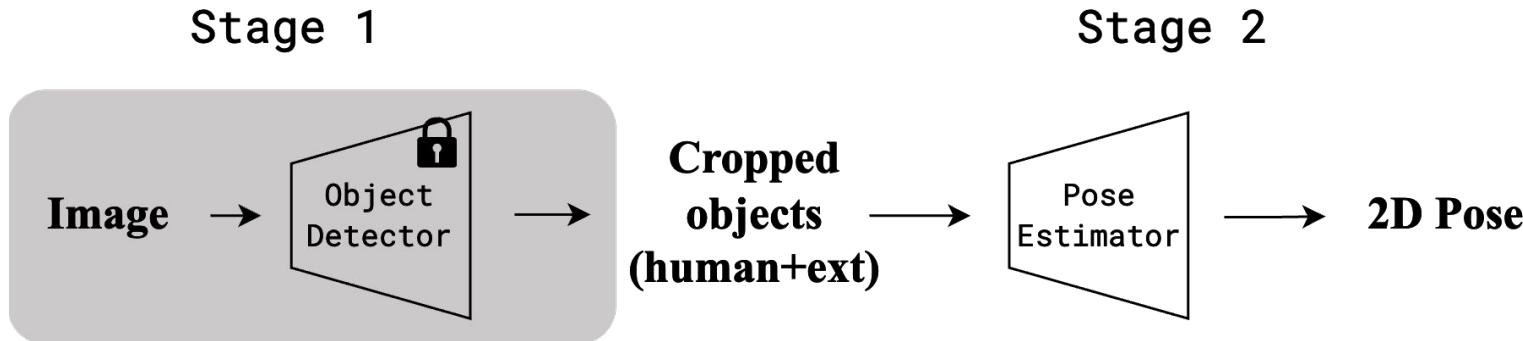
Bavesh Balaji, Jerrin Bright, Yuhao Chen, John Zelek,
Sirisha Rambhatla and David Clausi,
University of Waterloo

INTRODUCTION

- **Objective:** To jointly predict the pose of a human and the object that they hold and interact with, aka extensions.
- Essential for scene understanding, action recognition and HOI detection.



EXISTING WORKS



- Predominantly follow top-down paradigm
 - Crop and isolate all the entities (humans along with their extension) in the image.
 - Perform pose estimation on each entity separately.

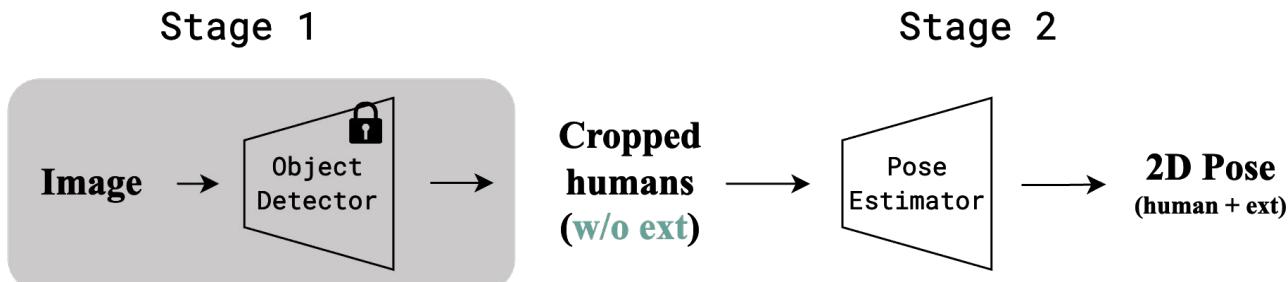
LIMITATIONS

- Inclusion of extension introduces **noisy features!**
 - Expects all keypoints of interest to be present within the bounding box.
 - Necessitates **larger bounding boxes**, leading to more noise.
- Pose estimators not tuned to handle multiple objects of interest in a single cropped image.



OUR CONTRIBUTIONS

- **Do not capture the extension** in the bounding box!
 - Works (Yao *et al.* 2010 & Neher *et al.* 2018) on human-object interaction identify a strong correlation between human and extension pose.
 - We leverage that to infer extension pose from humans.
 - Reformulate extension pose estimation to unseen keypoint prediction.
- *How can we effectively represent the spatial relations of these unseen keypoints?*



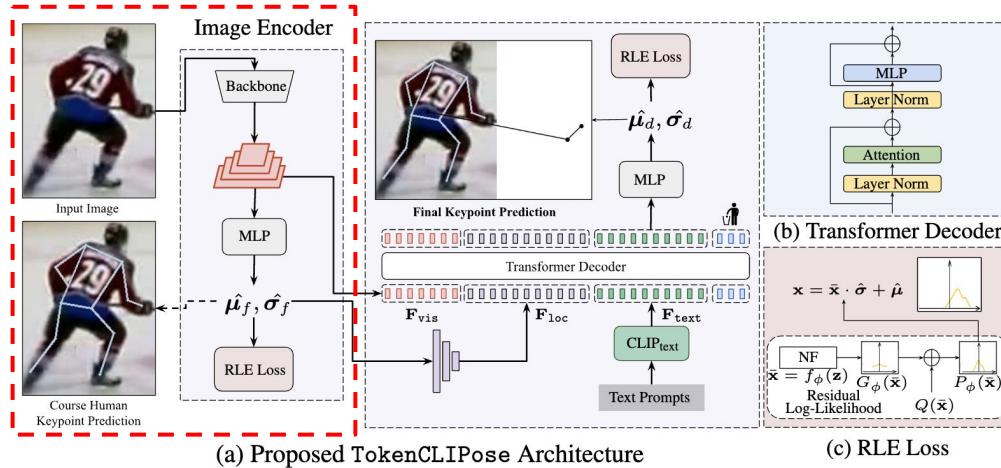
OUR CONTRIBUTIONS

- We leverage **language** to inform our model.
 - Keypoint-specific text prompts are utilized to generate text embeddings .
- Existing multimodal pose estimators align the image features to frozen text embeddings.
 - This is not desirable as text embeddings **do not maintain global positional structure!**
- We create learnable tokens for each keypoint and initialize them with these embeddings.

t-SNE plot of CLIP joint embeddings.
Upper-body joints (red) and lower-body joints (blue) have no positional correlation among each other.

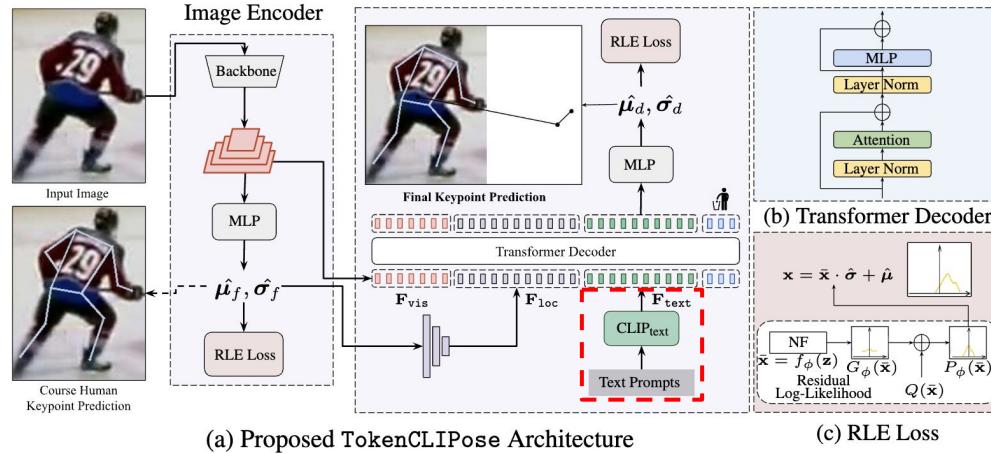
METHODOLOGY

VIP



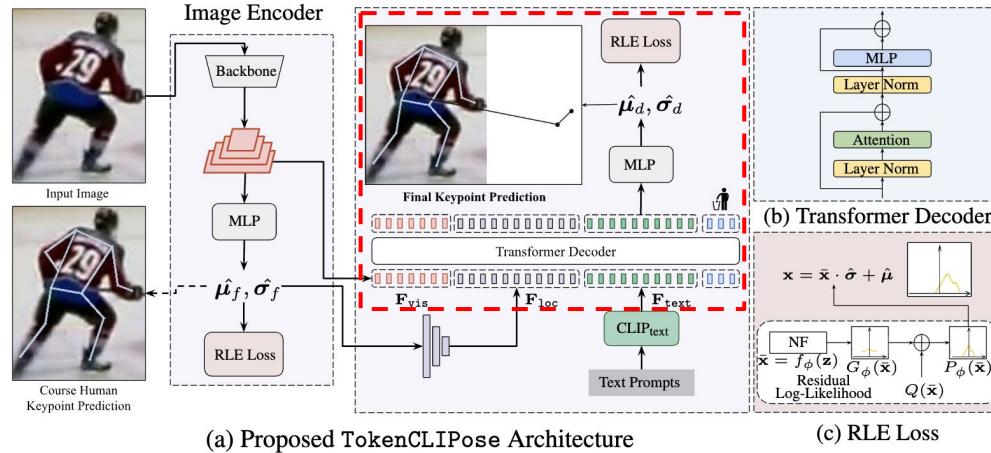
- The cropped image of a human is fed to an image encoder to extract multi-scale feature maps F_{vis} .
- These feature maps are used to predict coarse human keypoint locations $\hat{\mu}_d \in \mathbb{R}^{K_h \times 1}$, which are then reprojected to form location tokens F_{loc} .

METHODOLOGY



- Keypoint-specific text prompts are passed through the CLIP text encoder and projected onto a joint multimodal embedding space to obtain text-initialized keypoint tokens F_{text} .

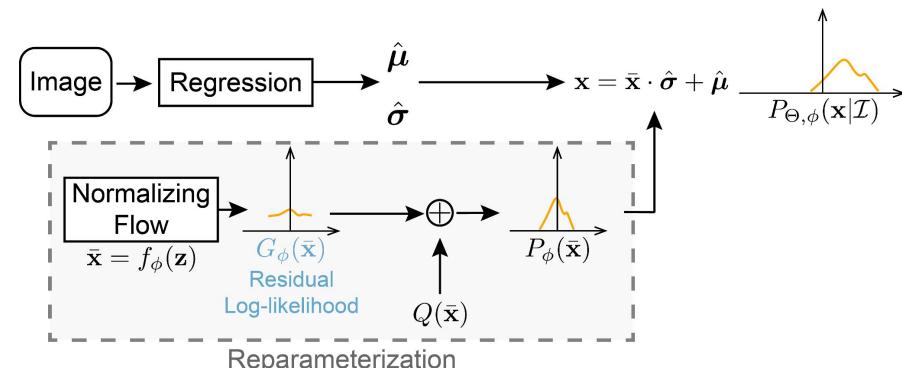
METHODOLOGY



- The visual, location and text tokens are concatenated to produce multimodal tokens $\mathcal{F} = \{F_{vis}, F_{loc}, F_{text}\}$.
- These tokens are then fed to a vision transformer to understand the correlations among the unimodal tokens and in between tokens of different modality.
- The output of the transformer is used to extract final keypoint coordinates $\hat{\mu}_d \in \mathbb{R}^{K_{out} \times 2}$ and scale parameter $\hat{\sigma}_d \in \mathbb{R}^{K_{out} \times 1}$

RLE LOSS

- Standard loss functions like ℓ_2 are more vulnerable to noisy inputs.
- Formulate regression as a distribution learning task.
- Leverage normalizing flows to calculate the deviation between predicted values and ground truth values.
- Adopt MLE to minimize the deviation.
- $$\begin{aligned} \mathcal{L}_{RLE} &= -\log P_{\Theta, \phi}(\mathbf{x} | \mathcal{I}) \Big|_{\mathbf{x}=\bar{\mathbf{x}}} \\ &= -\log P_{\phi}(\bar{\mathbf{x}}_g) + \log \hat{\sigma} \\ &= -\log Q(\bar{\mathbf{x}}_g) - \log G_{\phi}(\bar{\mathbf{x}}_g) - \log s + \log \hat{\sigma}. \end{aligned}$$



DATASETS

- Introduce 2 new datasets for extension pose estimation.
 - Ice hockey dataset collected from 10 NHL games.
 - Lacrosse dataset for zero-shot generalization capabilities.
- We also evaluate on CrowdPose to demonstrate the flexibility of our model.

RESULTS

Table 1: **Comparison with SOTA Methods** on our real-world ice hockey dataset (PCKh@0.5). **BoldFace** represents the best score. Underline represents the top score in existing works.

Method	Backbone	Input Resolution	Body	Butt End	Stick Heel	Stick Toe	Mean
SimpleBaseline [13]	ResNet-50	256x192	93.59	69.57	57.19	52.76	68.83
MSPN [9]	-	256x192	93.61	70.30	59.21	55.69	69.70
HR-Net [12]	HRNet-W48	256x192	94.90	71.48	60.29	55.36	70.44
TokenPose-L/D24 [11]	HRNet-W48	256x192	95.13	70.96	60.93	56.27	70.82
ViTPose [10]	ViT-B	256x192	<u>95.61</u>	71.94	<u>61.33</u>	<u>58.80</u>	71.92
TokenCLIPose	ResNet-50	256x192	95.81	74.86	65.79	65.08	74.92
TokenCLIPose	MSPN	256x192	97.17	75.41	66.70	66.34	75.53
TokenCLIPose	HRNet-W48	256x192	97.37	75.94	67.82	66.15	76.28
Improvement	-	-	1.76% ↑	4.00% ↑	6.49% ↑	7.35% ↑	4.36% ↑

Table 2: **Zero-shot Comparison with SOTA Methods** on our real-world Lacrosse dataset (PCKh@0.5). **BoldFace** represents the best score. Underline represents the second-best score.

Method	Backbone	Body	Butt End	Stick Heel	Mean
SimpleBaseline [13]	ResNet-50	94.73	67.28	53.99	72.00
MSPN [9]	-	95.84	70.68	57.40	74.64
HR-Net [12]	HRNet-W48	95.92	71.35	58.41	75.22
ViTPose [10]	ViT-B	<u>95.77</u>	<u>72.85</u>	<u>60.18</u>	<u>76.26</u>
TokenCLIPose	HRNet-W48	97.24	76.60	65.01	78.61
Improvement	-	1.47% ↑	3.75% ↑	4.83% ↑	2.35% ↑

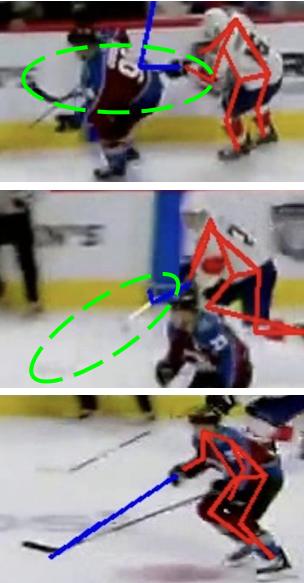
Table 3: **Comparison with SOTA Methods** on CrowdPose dataset. **BoldFace** represents the best score. Underline represents the second-best score.

Method	Input Resolution	AP	AP ₅₀	AP ₇₅	AP _E	AP _M	AP _H
Mask-RCNN [43]	256 × 192	57.2	83.5	60.3	69.4	57.9	45.8
AlphaPose	256 × 192	61.0	81.3	66.0	71.2	61.4	51.1
SimpleBaseline [13]	256 × 192	60.8	81.4	65.7	71.4	61.2	51.2
CrowdPose [6]	256 × 192	66.0	84.2	71.5	75.5	66.3	57.4
Hourglass-104 [44]	384 × 288	65.2	85.9	69.5	-	-	-
KAPAO-L [45]	384 × 288	68.9	89.4	75.6	76.6	69.9	59.5
HRNet-W48 [12]	384 × 288	69.3	89.7	75.6	77.7	70.6	57.8
Transpose-H [22]	384 × 288	71.8	91.5	77.8	79.5	72.9	62.2
HRFormer-B [23]	384 × 288	72.4	91.5	77.9	80.0	73.5	62.4
TokenCLIPose	384 × 288	76.2	93.9	82.4	83.3	77.4	66.1
Improvement	-	3.8% ↑	2.4% ↑	4.5% ↑	3.3% ↑	3.9% ↑	3.7% ↑

RESULTS

Input Image

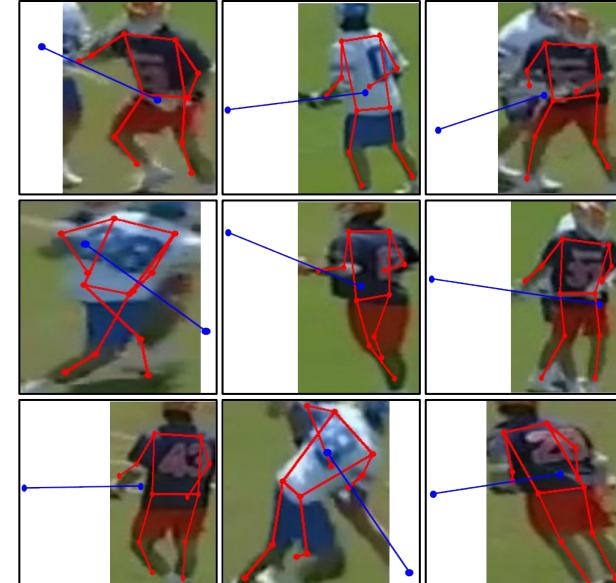
HRNet



ViTPose

Ours

Ice hockey



Lacrosse

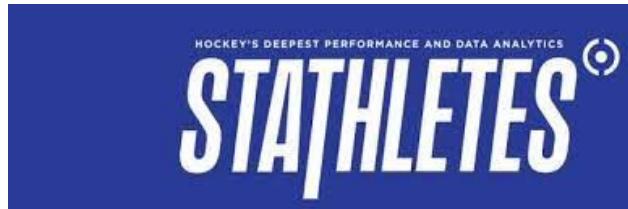
RESULTS

VIP

CONCLUSION

- **Out-of-bounding box prediction:** We reformulate the extension pose estimation problem as an unseen keypoint prediction problem and facilitate out-of-bounding box keypoint prediction.
- **Multimodal pose estimation:** We leverage the power of VLMs to augment the spatial relationship of keypoints. Furthermore, we showcase that conventional method of aligning image features to text embeddings is not optimal.
- **Significant improvement on SOTA:** We consistently outperform the existing state-of-the-art by 4.36%, 2.35% and 3.8% on the Ice Hockey, Lacrosse and CrowdPose datasets respectively, underscoring the impact of reducing noise for pose estimation.

ACKNOWLEDGEMENT



Thank You!