MITIGATING MOTION BLUR FOR ROBUST 3D BASEBALL PLAYER POSE MODELING FOR PITCH ANALYSIS

JERRIN BRIGHT, YUHAO CHEN AND JOHN ZELEK UNIVERSITY OF WATERLOO, WATERLOO, ONTARIO, CANADA

KEY CONTRIBUTIONS

METHODOLOGY (a) Motion Blur Learning **Pitch Sequences** (d) 3D Pose Estimation (c) 2D Pose (e) 3D Modeling **Estimation**

2. **Motion Blur Augmentation:** Motion flow (MF) between consecutive frames is analyzed by dividing each frame into k patches. The top N patches with the highest MF are se-

3. **2D Pose Estimation:** In each frame \mathcal{F}_t , the 2D pose of the pitcher is estimated, resulting

4. **3D Pose Estimation:** Utilizing a receptive field of s consecutive 2D pose ($\mathcal{P}_{2D} \in \mathbb{R}^{s \times J \times 2}$),

 $\mathcal{L}_{\text{concat}}^{(t)} \in \mathbb{R}^{1 \times \mathcal{J} \times 5}$.

6. **Human Mesh Recovery:** The 3D body mesh represented by $\mathcal{H}_{3D} \in \mathbb{R}^{\mathcal{V} \times 3}$ is then mod-

- **A focused augmentation strategy incorporating motion blur artifacts**, challenging conventional belief in pipelines.
- **Leveraging in-the-wild datasets**, aids in capturing the variability and complexity present in the data.
- **Improved performance of existing pose estimators with proposed framework incorporation**, where we demonstrate the substantial enhancement
- **Spatiotemporal cost reinforced by histogram representations**, to effectively align partially synchronized frames.

(c) ICON

(a) Input frame

(b) GT 2D pose

The proposed approach comprises several key steps:

- $\mathbb{R}^{H \times W \times 3}$ t_n $\frac{t_n}{t=1}$.
- lected as target regions for inducing blur.
- in $\mathcal{P}_{2D}^{(t)}$ $\mathcal{L}_{2D}^{(t)} \in \mathbb{R}^{\mathcal{J} \times 2}.$
- the 3D pose of the pitcher is estimated, producing $P_{3D} \in \mathbb{R}^{1 \times \mathcal{J} \times 3}$.
- 5. **Concatenation:** The 2D and 3D poses are concatenated represented by $\mathcal{P}_{\text{con}}^{(t)}$
- eled using spectral convolutional networks [1].

Synchronization: Warping the time axis and minimizing the distance (cost) between the sequence. A one-to-one hard constraint was assigned with a weighted cost function (G) .

> **Innovative Augmentation for Motion Blur:** The research introduces a unique technique to strategically enhance motion blur, improving the network's ability to handle this challenge during pose estimation.

DATASET

The loss function leveraged for 2D and 3D pose estimators is the Euclidean distance between γ dimensions, defined as:

$$
\mathcal{G} = g_s \left(\frac{1}{\mathcal{J}} \sum_{i=1}^{\mathcal{J}} (kp_{gt}^{(i)} - kp_{pred}^{(i)})^2 \right) \n+ g_t \left(1 - \frac{\sum_{i=1}^{\mathcal{J}} kp_{gt}^{(i)} \cdot kp_{pred}^{(i)}}{\sqrt{\sum_{i=1}^{\mathcal{J}} (kp_{gt}^{(i)})^2} \cdot \sqrt{\sum_{i=1}^{\mathcal{J}} (kp_{pred}^{(i)})^2} \cdot \sqrt{\sum_{i=1}^{\mathcal{J}} (kp_{pred}^{(i)})^2} \cdot (1) \right)
$$

Camera Projection: Through a process of gradient descent optimization, we iteratively refine the initialized focal length (f_i) , which will be used to reproject the 3D GT pose to 2D image coordinate.

$$
\hat{f} = f_i - \alpha \Delta L(f_i) \tag{2}
$$

RESULTS

CONCLUSION

-
-
-

 (4)

1. **Data Representation:** Each pitch sequence is represented as $\hat{\mathcal{P}} = \{ \mathcal{F}_t : \mathcal{F}_t \in \mathcal{F}_t \}$

2. **In-the-Wild Video Data Integration:** Incorporating inthe-wild video data, along with pseudo-groundtruth pose information, improves the network's performance under varying lighting and camera conditions.

3. **Significant Accuracy Improvement:** Substantial increase in SOTA pose estimation accuracy, particularly during pitching actions, underscores the importance of thoughtful augmentation to address motion blur.

LOSS FUNCTIONS

$$
\mathcal{L}_{pose} = \frac{1}{\mathcal{N}} \sum_{i=1}^{\mathcal{N}} \frac{1}{\mathcal{J}} \sum_{j=1}^{\mathcal{J}} \|kp_{pred}^{(ij)} - kp_{gt}^{(ij)}\|_{\gamma}
$$
(3)

where,

$$
\|\cdot\|_{\gamma} = \begin{cases} \|\cdot\|_2, & \text{if } \gamma = 2 \text{ (for } \mathcal{P}_{2D}) \\ \|\cdot\|_3, & \text{if } \gamma = 3 \text{ (for } \mathcal{P}_{3D}) \end{cases}
$$

The loss function employed for human mesh recovery encompasses vertex, joint, normal, and edge loss, defined as:

Motion Blur Learning (b) In-the-Wild Data

$$
\mathcal{L}_{mesh} = \lambda_v \mathcal{L}_v + \lambda_j \mathcal{L}_j + \lambda_n \mathcal{L}_n + \lambda_e \mathcal{L}_e
$$

ACKNOWLEDGEMENT

Our work was supported by the Baltimore Orioles, MLB through the Mitacs Accelerate Program. We also acknowledge the Digital Research Alliance of Canada for their hardware support.

REFERENCES

- [1] Hongsuk Choi, Gyeongsik Moon, and Kyoung Mu Lee. Pose2mesh: Graph convolutional network for 3d human pose and mesh recovery from a 2d human pose. *ECCV 2020*, pages 769–787, 2020.
- Kaan Koseler and Matthew Stephan. Machine learning applications in baseball: A systematic literature review. *Applied Artificial Intelligence*, 31:1–19, 02 2018.

 \setminus

 $\frac{1}{2}$