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Motivation =

Quantitative performance indication of baseball pitchers.

 Early identification of deceptive patterns in pitching.
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Analytics Framework
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Pase Extiredion

https://www.voutube.com/watch?v=ciWA41xPG4k
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http://www.youtube.com/watch?v=ciWA41xPG4k
https://www.youtube.com/watch?v=ciWA41xPG4k

Challenges @

1. Motion Blur
2. Self-Occlusion

3. Out-of-distribution pose
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Our Work

Pitch Sequences

Motion Patch Patch
Flow Vector Initialization Selection
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The proposed approach comprises several key steps:

1. Data Representation: Each pitch sequence is
represented as P = {F; : F; € RIWx3}in

2. Motion Blur Augmentation: Motion flow (MF)
between consecutive frames is analyzed by dividing
each frame into & patches. The top N patches with the

highest MF are selected as target regions for inducing
blur

3. 2D Pose Estimation: In each frame F,, the 2D pose
of the pitcher is estimated, resulting in Pl e RT*2

4. 3D Pose Estimation: Utilizing a receptive field of s
consecutive 2D pose, Pop € R**7*2 the 3D pose of
the pitcher is estimated, producing P, € R

oncat E

5. Concatenation: The 2D and 3D poses are
t)

concatenated represented by PO e RIS
6. Human Mesh Recovery: The 3D body mesh

represented by  %,, ¢ RV is then modeled using
spectral convolutional networks




Dataset

Input Image
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2. Camera parameters
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October 29, 2023




RGRY IR

Table 1. Performance of different SOTA 2D pose estimation ap-
proaches with the proposed motion blur learning module.

Method Type MB Loss
Xu et al. Heatmap 1.37
Ke et al. Heatmap 1.46
Panteleris et al.  Regressor LS
Liet al. Heatmap 1.83
Mao et al. Regression 1.26
Xu et al. Heatmap v 1.17 (+0.20)
Ke et al. Heatmap v 1.21 (+0.25)
Panteleris et al.  Regressor v 0.55(+0.60)
Lietal. Heatmap v 1.46 (+0.37)
Mao et al. Regressor v/ 0.61 (+0.65)
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Table 2. Results of the estimated pose with different modules for
training.

Base Model ItW MB 2D Loss 3D Loss

v 1.05 1.93
v v 0.88 1.61
v v 0.35 1.47
v v v 0.48 1.23
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Ablation Study

Table 3. Ablation study on varying number of filters for motion

nleeticot Table 5. Comparison with different patch types
Filters Loss Patch Type  Loss
0 L.15 None 1.15
1 0.68 Binary Mask  2.12
2 0.55 Inpainting 1.57
3 1.43 Gaussian Blur  0.99
4 2.28 Motion Blur ~ 0.55
5 3.44

Table 4. Ablation study on the region size and frequency of motion

blur effect
Spatch

10 0.83 074 066 0.64 0.67

20 0.71 057 062 060 062

30 0.68 055 0.61 0.639 0.59

40 0.74 063 068 075 0.78

50 077 075 071 083 097
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Conclusion

1. Innovative Augmentation for Motion Blur:
The research introduces a unique technique to
strategically induce motion blur, improving the
network's ability to handle this challenge
during pose estimation.

2. In-the-Wild Video Data Integration:
Incorporating in-the-wild video data, along
with pseudo-groundtruth pose information,
improves the network's performance under
varying lighting and camera conditions.

3. Significant Accuracy Improvement:
Substantial increase in SOTA pose estimation
accuracy, particularly during pitching actions,
underscores the importance of thoughtful
augmentation to address motion blur.

(a) Input frame (b) GT 2D pose (c) ICON (d) OSX (e) Ours
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