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EXECUTIVE SUMMARY 

 

Autonomous navigation of UAVs is vital for the safe and robust execution of intricate 

operations. Especially, building a reliable system that can traverse GPS-denied, unstructured 

and unknown environments that the UAV hasn’t observed, is challenging. The complete 

automation of UAVs can play a vital role in several important operations including forest fire 

detection and control, search and rescue operations, precision agriculture, surveillance of 

properties, monitoring of bridges, etc., which are very difficult for a human to do.  There are 

a lot of decision-making parameters while building a UAV considering limitations in the 

payload which in turn affects the number of sensors that can be used and flight time; stability; 

agility; and so on. Refer to APPENDIX C to know more about UAV systems, their 

advantages, applications, and limitations in detail. 

Considering all the above-mentioned issues and necessity, we have proposed an end-to-end 

completely UAV system that can effectively navigate in an unknown, cluttered, unstructured, 

and GPS-denied environment, simultaneously inspecting the traversing environment using 

novel mechanisms driven by classification and detection modules. The system is made in a 

very modular manner, thereby resulting in the fusion of any type of inspection task based on 

the classes fed to the model and it is highly independent of the environment that the UAV is 

subject to navigate. 

The robustness of the system was tested by evaluating modules of the system in different 

simulation environments and using various state-of-the-art datasets used to determine the 

robustness of the networks. 
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CHAPTER 1 

INTRODUCTION 

1.1 Thesis Contributions 

An end-to-end completely autonomous UAV navigation system in GPS-denied and 

unstructured environments was proposed via this thesis. Some notable contributions of 

the thesis include: 

1. A novel simple yet effective learning-free approach for obstacle avoidance  

2. An inspection module heavily relying on a novel sense-switch-act approach. 

3. A novel image classification network ME-CapsNet that retains important 

features for efficient detection. 

4. A novel localizing technique leveraging inertial data and using sensor fusion 

via Extended Kalman Filters with ORB featured frames. 

5. In-depth analysis and comparison of learning-based and learning-free obstacle 

avoidance approaches in terms of accuracy, computation, and agility.  

6. A custom dataset consisting of more than 10,000 image frames and their 

corresponding navigation command and state of the UAV. 

7. A modular plug-and-run inspection system capable of using for various real-

time applications with ease. 

Some of the thesis contributions in terms of publications include: 

1. Conference Paper - Submitted to 8
th

 IEEE CONECCT 2022 

ME-CapsNet: A Multi-Enhanced Capsule Network with Routing Mechanism  

[Pre-print] 

2. Journal Paper - Submitted to MDPI Sensors Journal 

A Comprehensive Study on Autonomous Navigation using Learning-based 

Techniques for Robotic Systems.  

1.2 Thesis Overview 

Unmanned Aerial Vehicles or UAVs are cyber-physical systems that have been 

finding applications in diverse fields and can be controlled remotely or autonomously. 

https://arxiv.org/abs/2203.15547
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However, UAVs face various challenges when it comes to autonomous navigation 

owing to the assumptions and hardware failures in existing algorithms.  

UAVs often have payload constraints as a result of their size and power consumption. 

Cameras have proven to be compatible especially in small UAVs, considering their 

size and weight. Thereby, we have used visual sensors for the successful 

implementation of our tasks. Understanding scenes and extrapolating tasks for the 

UAV is not possible from the raw frame captured from the camera. Therefore, the 

efficient transformation of the raw frames is vital to developing smart navigation 

strategies for the UAV. Also, the use of GPS tends to reduce the reliability of the 

UAV system considering its low cycle rate and no penetrability.  

Thus, we are proposing an End-to-End System (E2ES) for UAVs in GPS-denied and 

unstructured environments that can simultaneously do inspection tasks. Two example 

tasks taken in this work include forest fire detection and search and rescue operations. 

The two most important modules of autonomous systems that we aim to explore here 

for these tasks include the navigation module and the inspection module focusing on 

unstructured, GPS denied environments. 

For navigation, we developed two algorithms, each using state-of-the-art automation 

learning-based and learning-free techniques. The performance of both the algorithms 

was tested extensively to understand the significance of learning-based techniques 

when compared to learning-free techniques. Also, the data (images, pose, UAV 

angles) from learning-free obstacle avoidance was used to learn the best strategy for 

navigation when the learning-based technique was leveraged for autonomous 

navigation. Also, the network to learn the output yaw commands was leveraged from 

sub-modules of the inspection module, thereby proposing a compact E2ES. 

For inspection, a sense-switch-act novel approach was adopted. The goal of this 

approach was to reduce the computational overhead of the inspection task. First, an 

image classification network is used to detect the presence of a task-specific class in 

the perceived field of view of the UAV. We have built a novel Capsule Network 

architecture leveraging strategic fusion with Squeeze-Excitation Networks. 

Expectation-Maximization Routing replaces the traditionally used max-pooling to 

retain feature information. The proposed algorithm effectively recalibrates the 

channel-wise and spatial-wise relationship of the features. Also, task-specific 
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inspection is done to expand the scope of the applications of the UAV system, 

maintaining its accuracy. After observing the class in the environment, the image 

classification network is switched to an object detection model to detect the exact 

location of the task-specified class. This way, computation cost was reduced by 

maintaining the robustness of the system. 
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CHAPTER 2 

RELATED WORKS 

2.1 Obstacle Avoidance 

2.1.1 Learning-Free 

The learning-free approach is the most traditional obstacle avoidance strategy used. 

When learning-free navigation is done in GPS-denied environments, the use of visual 

odometry becomes mandatory. It can be done using features [1], [2], and [3] or using 

appearance [4], [5], and [6] or both feature and appearance-based techniques [7]. 

RADAR was used for obstacle avoidance in [8] and [9] and it was observed to 

consume more power and a significant increase in payload due to the sensor. Thus, 

considering the disadvantages of such sensors, visual sensors are used.  

Obstacle avoidance using visual sensors can be done in three ways: monocular cues 

[10], [11]; stereo vision [12], [13] and motion parallax [14], [15]. Here we will be 

using monocular cues instead of a stereo setup due to the following two reasons: the 

payload of a stereo setup; and the distance of measurement are greatly limited by the 

baseline, beyond which it is similar to a monocular sensor. Stefan et al. [16] proposed 

using of stereo vision and optical flow to evade obstacles experimenting in sub-urban 

areas. Huili et al. [17] presented a work using depth images from image processing 

techniques and obstacles were estimated using EKF.  

Coming to the submodules of vision-based monocular obstacle avoidance techniques, 

it is of three important modules. They are perception, planning, and control modules. 

For monocular vision, depth estimation through deep learning techniques plays a vital 

role. Some depth estimation techniques using monocular vision data include the works 

of [18], [19], and [20]. There are two path planning approaches- randomly sampling 

and optimal search algorithm. Some state-of-the-art path planning algorithms include 

[21], [22], and [23] focusing on optimal search algorithms, and [24] and [25] focusing 

on a random sampling approach. 
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2.1.2 Learning-Based 

The dominance and effectiveness of learning-based approaches have been 

demonstrated in recent breakthroughs in AI. In 1989, Pomerleau et al. [26] introduced 

the first IL method for navigating in an unfamiliar environment. ALVINN was the 

name of the architecture, and it was able to maneuver at speeds of up to 25 m/s 

utilizing NAVLAB, a Chevy test van. ALVINN's performance prompted various 

investigations on the concept, including widening it and conducting extensive research 

into aligning methods to it. This section, as previously said, provides an in-depth 

examination of all of the most widely used IL approaches. 

Muller et al. [27], inspired by ALVINN, presented a few architectural improvements 

to get more robust navigation results. To extract greater spatial information from the 

input images, the monocular frame was modified to a stereo configuration, and instead 

of FCNN, a 6-layer CNN was employed. In addition, rather than using road-following 

data like ALVINN, an off-road dataset was used for training. Following these 

advancements, a slew of algorithms emerged, dividing the learning of behavior policy 

into BC and IRL, and then further subcategories. Park et al. [28] leverage a human 

expert to extract the required information from an image obtained from the Gazebo 

simulation environment, which communicates via the ROS framework. 

According to Kumaar et al. [29], the taught policy was initially tested in entertainment 

programs such as GTA SA and Mario Kart. Wang et al. [30] use vehicle pose and sub-

goals to estimate the sub-goal angle, which is then used in conjunction with image 

sequences to train (using a new angle branching network). Loquercio et al. [31] 

developed an autonomous navigation architecture that ran at roughly 10 m/s with a 

60% success rate and at 7 m/s with a 100% success rate, making it the most agile 

architecture conceived and tested in real-time. Bansal et al. [32] presented 

ChaufferNet, a unique method that employed mixed data (real-time and simulated) to 

drive a car in real-time while restricting exploration. 

2.2 Inspection 

The deep learning regime has improved significantly since the advent of deep 

convolutional networks [33]. Stacking layers as a result of deep networks boosted 
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performance tremendously, but it also brought vanishing gradient issues [34]. 

Additionally, the use of operating layers such as max-pooling resulted in a loss of 

spatial information. Instead of stacking layers, CapsNet tries to tackle these problems 

by layering them. Deep learning research has gotten a lot of traction as a result of 

these new methodologies. Given its relevance and scope of improvement over older 

techniques, CapsNet is regarded as a giant leap forward in neural networks. Here are 

some examples of effective CapsNet research. Mazzia et al. [35] presented a non-

iterative routing strategy that takes advantage of self-attention mechanisms. Deliege et 

al. [36] used a bespoke Hit-or-Miss layer to create a counterpart for the DigitCaps 

layer. To increase the overall performance of the network, Huang et al. [37] 

recommended adding two attention layers to the original CapsNet. 

Yang et al. [38] propose a method for improving CapsNet's feature extraction capacity 

by employing a modified version of ResNet dubbed Res2Net and SENet in the base 

layers to improve the CapsNet's performance. This is the work that comes closest to 

our work in terms of relevancy. To boost the performance of the squeeze operation, 

we strategically placed SE blocks between several layers and used a more powerful 

kind of pooling. 

There are a lot of object detection techniques including DSSD [39], YOLO [40], SSD 

[41], and G-CNN [42]. You Only Look Once (YOLO) is a powerful object detection 

model and tool. YOLO v3 is based on a Darknet variation that had a 53-layer network 

trained on ImageNet. For detection, 53 more layers are put on top of it, giving YOLO 

v3 a 106-layer fully convolutional underlying architecture making the model 

architecture suitable for object detection with high accuracy. YOLO9000 [43] was 

proposed over YOLOv2 architecture that is capable of detecting more classes than 

COCO, by using labels from both COCO and ImageNet. It uses hierarchical 

classification from WordNet [44], where classes are depicted in a tree-based structure.  

Single Shot Detector (SSD) is a deep neural network-based method for detecting 

objects in images by just using a single neural network. Over various aspect ratios, the 

SSD technique discretizes the output space of bounding boxes into a set of default 

boxes. The approach scales each feature map location after discretization. To naturally 

handle objects of varied sizes, the Single Shot Detector network integrates predictions 

from numerous feature maps of various resolutions. 
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CHAPTER 3 

OVERVIEW OF THE SYSTEM 

 
Figure 1 Overall architecture of the proposed system 

In this thesis, we study the various shortcomings of autonomous navigation systems 

focusing on UAVs, especially when traversing in unknown, cluttered environments 

and building robust solutions for those. The objective is to achieve robust reliable 

UAV navigation by traversing to the farthest distance specified avoiding obstacles and 

doing a specific task in the environment simultaneously. The tasks taken in this thesis 

to explain the robustness of the proposed system include Search and Rescue, Forest-

fire detection, and agriculture burn to name a few.  

We have divided the complete architecture into four modules (A, B, C, and D) as 

shown in Figure 1 as four colored blocks. A and B blocks correspond to autonomous 

navigation with obstacle avoidance in an unknown environment using a learning-

based and learning-free approach respectively. C block corresponds to image 

classification used for inspection tasks from the UAV perspective to detect the 

presence of a particular class assigned specifically to a task. D block corresponds to 

the object detection sub-module that identifies the exact position of the class sensed 

by the image classification sub-module (represented as C in Figure 1). All the four 

modules and its sub-modules is discussed in detail in the following chapters 
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CHAPTER 4 

BASIC CONCEPTS 

4.1 Quadcopter Dynamics 

Quadrotors are 6 D.O.F high-performance systems that require proper control 

elements on every D.O.F for efficient and safe flight. These control elements are 

essential to creating a stabilized path from a start position to a target position. It is of 

high importance that the system must be dynamically modeled to understand the 

system and use it to model a control system for the aforementioned purpose. 

State variables are variables that define the current state of the system. Quadrotors 

being a 6 D.O.F system, is defined with 12 state variables i.e., position, velocity, and 

attitude of an airframe in the inertial frame; and angular rates. 

�⃗� = [𝑋,  𝑌,  𝑍,  �̇�, �̇�, �̇�,  𝜙,   𝜃,   𝜓,   𝑝,   𝑞,   𝑟]
𝑇
#(1)  

Since there we take control over all the axis, we define 4 control elements and their 

associated control inputs 

  �⃗⃗⃗� =  [ 𝑢1, 𝑢2, 𝑢3, 𝑢4]
𝑇 =  [𝑇𝛴, 𝑀1, 𝑀2, 𝑀3]

𝑇 #(2)  

The quadcopter dynamics and mathematical modeling is used effectively to design the 

MPC control and kinodynamically plan an optimized path for traversing. It is 

explained extensively uniquely for our quadcopter system in Section 5.3.1. 

4.2 Camera Calibration  

Camera calibration is performed to reduce the radial and tangential distortion. 

Calibration helps to determine the intrinsic and extrinsic parameters along with the 

distortion coefficients. Intrinsic parameters include focal length and optical centers 

and extrinsic correspond to the rotational and translational vectors. First, the image 

points are determined on the checker board of pre-defined size, then the undistorted 

image is generated once calibration is done.  
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Figure 2 Camera calibration 

Figure 2 represents the process of camera calibration. A checker board of predefined 

size is used for the process. The software captures in greyscale mode. Corner 

detection module helps in identifying corners and distribute several features on the 

checkerboard then the user moves the board to various pose in the field of view and 

system captures several images to approximate intrinsic and extrinsic parameter of the 

camera.  

4.3 Image Preprocessing 

Image preprocessing is done to reduce the noise observed in the image frame from the 

UAV visual sensor due to uncertainities in measurement and sensor bias. There are 

various preprocessing techniques including smoothening or blurring, rotation, 

warping, etc. We will be studying the performance of each preprocessing technique in 

the subsections. Smoothening or blurring is one of the most commonly used 

preprocessing techniques that helps in removing noises in the image leaving most of 

the image pixels intact. Some of the smoothening methods experimented with are 

image filtering, gaussian blurring, bilateral filtering, and median blurring.  
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Figure 3 Image preprocessing using smoothening 

Rotation and warping are a few other preprocessing techniques along with converting 

the frames into greyscale and normalizing the image. Many of these techniques were 

experimented with the system and results have been logged in subsection 7.1. 

4.4 Sensor Fusion 

Sensor fusion is generally done to enhance the reliability of the measurement model of 

the system significantly with the use of multiple sensors. We will be fusing the visual 

information with inertial measurements using Extended Kalman Filters. 

Linear equations produce gaussian results when gaussian filter is applied but nonlinear 

equations will not produce gaussian results. And we also know that in the real world 

most problems are nonlinear in nature. Therefore, the solution for this problem will be 

to approximate the nonlinear model to linear model. This approximation can be done 

in various ways, for example by using the Taylor series. That’s, Gaussian on the 

nonlinear function will be done followed by taking the mean first and then performing 

several derivatives to approximate it. The first derivative of a Taylor series is called as 

Jacobian Matrix. This Jacobian Matrix converts the nonlinear curve to a linear 

function. 

The extended Kalman filter is based on a nonlinear dynamic system with a motion 

model and the measurement model is: 

𝑥𝑡 = 𝑔(𝑢𝑡, 𝑥𝑡−1) + 𝜖𝑡 𝑧𝑡 = ℎ(𝑥𝑡) + 𝛿𝑡#(3)  
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In the above equation, 𝑥𝑡 represents the measurement model, where 𝑔 is a non-linear 

function that depends on 𝑡 and 𝜀𝑡 is the noise in the model. The same is with the 

measurement model 𝑧𝑡 where function ℎ is a nonlinear function and 𝛿𝑡 is the noise in 

the measurement model. 

4.5 Localization 

Determining the position and orientation of a robot using the data measured from the 

sensors is called odometry or localization. When visual sensors are used to identify the 

pose of the robot, it is termed visual odometry or vision-based localization. Visual 

odometry provides computationally cheaper while providing more accurate odometry 

results when compared to GPS, wheel odometry, sonar localization, or INS. Visual 

odometry can be done in either of two ways- feature-based or appearance-based. Here, 

we will be focusing on implementing feature-based visual odometry. Refer to 

APPENDIX F to know more about odometry and its phases in detail. 

Thus, for feature-based odometry, choosing the right feature extractor is primitive. 

There are a lot of feature extractors including FAST [45], SIFT [46], ORB [47], SURF 

[48], Shi-Tomasi [49], etc. Table 1 shows all the properties of the most popularly used 

feature extractors. In our work, we will be using ORB feature extractors considering 

the proper balance between accuracy and computation. The experimentation behind 

selecting ORB can be studied in Section 7.2. 

Table 1 Properties of different feature extractors 

 ORB SIFT SURF KAZE AKAZE BRISK 

Origin 2011 1999 2006 2012 2013 2011 

Scale Invariance YES YES YES YES YES YES 

Rotation Inv YES YES YES YES YES YES 

Keypoint Type FAST DoG Hessian Hessian Hessian - 

Descriptor Type Binary  Integer  Real  Real MLDB Binary 

Descriptor Length 32 128 64 128 - 64 

ORB stands for Oriented FAST and Rotated Brief. In ORB, an oriented FAST 

algorithm is used to calculate and find the key points from the image and rotated 

BRIEF descriptors are used. Coming to the feature detection part, the image pyramidal 

representation of frames is done for scale invariance, and then features from each 

pyramidal layer are extracted. Firstly, to estimate the orientation, a centroid will be 

estimated from the moment equations.  
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𝐶 = (
𝑚10

𝑚00
,
𝑚01

𝑚00
)#(4)  

Then, an orientation patch can be obtained using the below-mentioned equation.  

𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑎 𝑥 𝑡𝑎𝑛2 (𝑚01,𝑚10)#(5)  

Rotated Brief descriptors are used once extraction is done. The orientation patch 

obtained is used to compute the BRIEF descriptor operation: 

𝑔(𝑝, 𝜃) = 𝑓(𝑝)| (𝑥, 𝑦) 𝜖 𝑆#(6)  

Here we used three different SLAM approaches (ORB, VINS, and RTABMap) to 

estimate the odometry of the robot. Refer to APPENDIX D to learn more about 

SLAM techniques. The best approach was then experimentally selected and used in 

the final system. Now we will look into the three techniques used for localization in 

detail. The source codes for all the approaches have been open-sourced and can be 

obtained from APPENDIX A. 

 
Figure 4 Implementation of ORB SLAM 

ORB SLAM is a visual slam-based technique that uses a monocular or Stereo camera 

to perform localization in a 3D environment. ORB SLAM uses oriented fast and 

rotated brief or ORB features which are known for their efficiency and ability to 

match hard to define features in the environment while keeping it highly efficient in 

terms of computation. Similar to VINS a keyframe is initialized during the start of the 

process with about 200-300 features defined over the frame to initialize the reference 

axis and sparse point cloud map. With the use of the keyframe, the subsequent frames 

are compared and feature matched to triangulate the position concerning the initial 

keyframe. The whole process of localization using ORB SLAM is highly efficient due 
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to the efficiency of ORB features and the ability to parallel compute the complete 

process. A loop closure occurs when a complete match of the frame over a bias occurs 

then the whole localization is aligned to create a more accurate map and odometry 

data. 

 
Figure 5 Implementation of VINS SLAM 

VINS stands for the Visual-Inertial SLAM system. For this implementation, a 

monocular camera is used along with the frame-aligned IMU for getting inertial data 

for the corresponding frame aligned properly with the visual frame. It uses Shi-

Tomasi features and IMU data to track features in multiple frames. The initial step 

involves choosing the first frame as the keyframe and initializing all the features using 

the BRIEF descriptor. About 100-300 features are described for every frame. Once the 

initial frame is initialized then we proceed to subsequent frames, not just translation it 

also can be pure rotation as now the system is equipped with a gyroscope the system 

can easily triangulate the data to track the features, and with pure rotation alone, we 

can compute a parallax. Adding an inertial component to a SLAM system not only 

improves the pose and the state estimation of the system it also helps in the camera 

extrinsic calibration. 
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Figure 6 Implementation of RTABMap SLAM 

RTABMap stands for Real-Time Appearance-Based Mapping. It is a Graph-based 

SLAM approach based on appearance-based loop closure detection. It checks how 

likely an image comes from the previous location. Graph SLAMs have better accuracy 

than FAST SLAM. Here, we used RTAB-Map with stereo only for 6 DoF mapping. 

Appearance-based SLAM means that the algorithm will use the data obtained from 

vision sensors to localize the position of the robot and simultaneously map the robot in 

the environment. Loop Closures are used to determine if the robot has already seen the 

particular frame before. Local Loop closure is dependent on Visual Odometry whereas 

Global Loop Closure is independent of the estimated pose that’s visual odometry. 

Thus, when the robot moves, the map expands, and the number of images that are 

compared increases in turn. 

4.6 Obstacle Avoidance 

Obstacle avoidance techniques are predominantly divided into learning-based and 

learning-free approaches. The learning-free approach is the most traditional approach, 

which includes three modules- perception, planning, and control. But recent research 

works have shown the dominance of learning-based avoidance. It has mimicked close 

to how humans evade obstacles. The backbone of learning-based approaches is either 

demonstration fed as input or rewards assigned for every action. In this subsection, we 

will be exploring learning-free and learning-based approaches in detail.  
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4.6.1 Learning-free Approach 

4.6.1.1 Perception 

Understanding the environment that the robot is traversing is the aim of the perception 

module. In layman's terms, the perception module should mimic the environment in 

such a way, that the path planning module has to understand and navigate in that 

environment. This reconstructed scene is called the occupancy grid. Usually, a 2D 

occupancy grid is used to represent the environment instead of 3D grids to save 

computation. Thus, when the reconstruction performance increases, the path planning, 

and control modules, will tend to generate better, optimized trajectories for navigation. 

The perception module in general irrespective of the sensors used can be as follows: 

depth estimation, point cloud conversion, and occupancy grid formation. 

Depth estimation refers to estimating the distance between the sensor and obstacles in 

front of it and the free space relative to the frame. For example, as shown in Figure 7, 

the dark colors indicate that the objects are far away from the robot and the light color 

indicates the object is close to the robot.   

 
Figure 7 Monocular Depth Estimation 

Next, point clouds are generated from the pixel intensities, using the absolute scale 

factor. The absolute scale factor can be initialized before the start of the system. Thus, 

we will be extracting 3D coordinates from a 2D image.  

Now with the obtained point cloud data, we can create occupancy grids. Occupancy 

grid formation for monocular vision sensors is the trickiest, considering we don’t get 

the absolute scale of the environment directly. For 2D grid formation, we will take the 

x and z coordinate and plot it in a grid-based space, thereby obtaining an occupancy 

grid as observed from the top. This is then fed to other modules of the learning-free 

obstacle avoidance. 
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4.6.1.2 Path Planning  

Path planning is vital to determine the most suitable and permittable trajectory for the 

robot. In general, the input to the path planning module is the occupancy grid or the 

environment grid and the output is the trajectory points. Thus, control points are 

subsequently passed through the control module which generates the output PWM for 

the motors. The most suitable path is optimized in general by path planning 

techniques. But most of the techniques available don’t take into account the dynamics 

of the robot. Thus, adding kinodynamic properties to the path planning technique is 

important for navigation in real-time. Refer to APPENDIX E to know more about 

different path planning techniques in detail. 

Kinodynamic planning is a method of generating trajectories considering the velocity, 

acceleration, and force boundaries of the defined system. The dynamics of the 

quadrotor in all the axis is considered while defining the bounds for the planning to 

produce a time-optimal control solution. Generally, in the proposed planning method, 

the probabilistic roadmap approach is used to generate waypoints then connected by 

feasible trajectories. The generated trajectories are then converged to a single solution 

based on efficiency and the traversing feasibleness. 

The two-path planning approaches extensively studied and experimented with are 

RRT and A* path planning algorithms. Random Rapid Trees (RRT) is a sampling-

based path planning technique that randomly explores an unknown environment while 

traversing. It initially generates random points which are then connected based on the 

nearest neighbor nodes, considering the node is placed outside the obstacle boundary. 

The algorithm ends when a node is generated within the goal region, or a limit is hit so 

that an effective navigation route can be established. The connecting of nodes with 

neighbors and random node formations can be visualized in Figure 8. 

 

Figure 8 RRT path planning exploration 
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A* path planning is heuristic-based path planning which uses a node-based approach 

to device a safe path from start to goal position. It calculates the value of the heuristic 

function at each node in the work area and involves examining many nearby nodes to 

get the best solution with no possibility of colliding. 

 
Figure 9 Workflow of A* path planning 

Figure 9 shows the algorithmic workflow of the A* path planning algorithm. First, the 

occupancy grid consisting of all the positions of the obstacles with respect to the 

global frame is taken as the input. Several nodes are initialized on the global map to 

find a suitable path for navigation. The algorithm initially explores all possibilities 

through all the selected nodes and the best-optimized path is chosen for traversal. 

While traversing, if a new obstacle is detected, then the global path planner re-

searches for a new global optimal path, thus avoiding the observed obstacle. 

4.6.1.3 Control System 

There are various control system architectures used for the efficient navigation of 

robotic systems. Here in the proposed E2ES, we will be using MPC and PID-based 

control systems on different aspects of the architecture. 
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Figure 10 Idea behind MPC control block 

According to Newtonian mechanics, once we modeled our system behavior, we 

should be able to predict the behavior under a set of constraints over some time. But 

due to the disturbances and uncertainties in the equipment and measurement, the 

prediction can be unpredictable thus making it non-linear. To create a high-fidelity 

controller, kinematic and dynamic modeling is done and the state variables of the 

system are found to predict the behavior of the system over time. 

The Model Predictive Controller (MPC) is a high-fidelity controller which uses 

system constraints and disturbances while using the predictive nature of the system. 

MPC is very simple to tune while the work case can be performance-centric through 

processing multi-variables at the same time. MPC is considered to be nonlinear 

control that simply works on predicting the future states and errors. 

It is widely used in the majority of fields where multi-variable control is required for 

the predefined application. The main drawback of MPC being it computationally 

intensive, but advancement in parallel computing has solved the issue in several work 

cases including robotics. 

Quadcopters are a high-fidelity system with 6 DOF that needs a multivariable control 

over the roll, pitch, yaw, thrust, rate of change velocity, rate of change of angular 

velocity to create an agile control of the system. With control input 𝑢 the defined 

kinematics and dynamics predict the 12 state variables of the system. For moving 

from the point, A to B in an agile manner, the controller uses a future state value to 

predict a suitable control command thereby effectively reaching the goal state. This is 

successfully done considering the disturbances and the uncertainties related to it. 

PID is a closed-loop control system that stands for Proportional Integral Derivative 

controller. It is widely used in industries with a wide range of efficient applications.  
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Figure 11 Idea behind PID control block 

Proportional Controller (P only)- Stabilizes unstable process. It helps in reducing 

the steady-state error in the operation. But this controller can’t always eliminate the 

steady-state error. Thus, we will check along with the Derivative controller next.  

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑘 ∗ 𝑒𝑟𝑟𝑜𝑟 #(7)  

Proportional Derivative Controller (PD only)- Increases the net stability of the 

operation. The derivative part of the control system helps in predicting the future 

errors of the systems based on their response. Thus, it helps in controlling the sudden 

shift of the operation.  

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑘𝑝 ∗ 𝑒𝑟𝑟𝑜𝑟 + 𝑘𝑖 ∗ (𝑒𝑟𝑟𝑜𝑟 − 𝑝𝑟𝑒𝑣_𝑒𝑟𝑟𝑜𝑟)#(8)  

Proportional-Integral-Derivative Controller (PID)- Thus, this is a very dynamic 

system equipped with zero state error, fast response, no oscillations, and high stability. 

Here in equation 9, the 𝐼_𝑡𝑒𝑟𝑚 is incremented for every estimated error value in the 

system.  

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑘𝑝 ∗ 𝑒𝑟𝑟𝑜𝑟 + 𝑘𝑖 ∗ (𝑒𝑟𝑟𝑜𝑟 − 𝑝𝑟𝑒𝑣𝑒𝑟𝑟𝑜𝑟) + 𝑘𝑑 ∗ (𝐼𝑡𝑒𝑟𝑚 + 𝑒𝑟𝑟𝑜𝑟)#(9)  

PID has several advantages when implemented for advanced control. It is very simple 

to implement since mathematics is very simple and can be implanted in almost all 

programming languages since it doesn't need a powerful maths solver to derive the 

solution. PID controller is highly effective with limited computational resources since 

it can also be implemented on an Arduino-based microcontroller and tuning of the 

control system can be done with a simple trial and error method. Model-based 

controllers only have an integral type of action to recover from unmeasured 

disturbances, but PID additionally offers proportional and derivative actions that 

operate instantly on an unknown disturbance. Refer to APPENDIX G to know more 

about different path planning techniques in detail. 
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4.6.2 Learning-based Approach 

As the use of robotic systems evolves, so does the demand for robotic solutions to a 

wide range of challenges, particularly when the application demands robots to 

navigate in complicated, unknown settings. Humans have solved this problem by 

comprehending teacher comments. The teacher instructs the student by providing 

feedback in a variety of methods, such as rewarding proper behavior or modeling the 

desired behavior for the student to imitate. Learning-based techniques are the name 

given to this approach when it is applied to robots. Imitation learning and 

reinforcement learning are the two most frequent learning-based strategies. We'll look 

at the above-mentioned learning-based strategies in this section. 

4.6.2.1 Imitation Learning 

Imitation learning [50] or IL is a type of machine learning that uses a group of 

demonstrations to learn a control policy. Demonstrations are a collection of 

trajectories that depict an action leading to a specific state. The key principle of IL is 

learning the action and predicting from a state value. As a result, autonomous systems 

use IL to learn tasks in the hopes of imitating expert activities. In Illinois, the 

demonstrator specifies the various modes of learning. For learning, the traditional 

approach includes both action and state. In a navigation task, the action correlates to 

the PWM, while the state denotes the pose or odometry. Imitation-from-Observation, 

or IfO, is a type of IL in which just state is employed. Some basic representational 

units in IL include 𝜏𝑒 which represents the trajectory of the demonstration, 𝑠𝑡 and 𝑎𝑡  

representing the state and action of the demonstration or agent at a particular time 𝑡. 

The objective of IL is to find the learning policies (𝜋) from the demonstrations by the 

expert. Also, 𝐸 and 𝐿 correspond to the expert and the learner. 

𝜏𝑒 = {(𝑠𝑡, 𝑎𝑡)}#(7)  
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Figure 12 Workflow of imitation learning approach 

As shown in Figure 12, first the expert navigates through the environment based on 

desired behaviors thereby generating a dataset 𝐷. The dataset 𝐷, conventionally 

consisting of state and action is then fed into a High-Level Controller or HLC which 

generates the most suitable trajectory (𝜏𝑒). The Low-Level Controller or LLC then 

tries to follow 𝜏𝑒 which will generate a new set of 𝑠𝑡 which tries to imitate the 𝑠𝑡. The 

policy in turn will output a control input ut for navigation.  

4.6.2.2 Reinforcement Learning 

Reinforcement learning or RL is a Machine Learning (ML) technique in which agents 

learn by completing a task in an interactive environment and receiving feedback. In 

general, agents learn from the feedback of their actions through trial and error. In 

Figure 13, the agent uses the current state data to map an action 𝑎𝑘, which is then used 

to produce a suitable reward 𝑟𝑘+1 and state 𝑠𝑘+1. This is because the training 

environment has a Markovian property, which means that the agent's future state and 

reward are exclusively determined by his or her current state. A control policy is used 

by agents to obtain their intended states. Training labels in Deep RL or DRL are 

dynamic, unlike supervised learning, and hence the process cannot be done offline, 

necessitating constant interaction with the environment. 
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Figure 13 Workflow of reinforcement learning approach 

The first step in the RL process is to set up an appropriate environment that is 

Markovian in nature. Following the successful creation of the training environment, 

the appropriate reward and policy must be developed, followed by the selection of the 

right training method for the specific task. The policy is then trained for multiple 

episodes until it maximizes the defined reward. Following successful completion of 

training, the policy can be validated and deployed to an appropriate agent. 

4.7 Inspection 

4.7.1 Convolutional Neural Network  

In this subsection, the basic layers constituting the proposed novel architecture are 

explained in relevance to the convolutional neural network.   

4.7.1.1 Convolution Layer 

The objective of the convolutional layer is to capture features of both high- and low-

level features including edges, corners, and gradient orientation from the input image 

and thus understanding the images and visualizing them just like humans [51]. So, the 

convolutional layer primarily does one of two things: it either reduces the spatial size 

of the image map by simply using kernels called Valid Padding (no padding) or it 

maintains the spatial distribution of the image map by augmenting the original image 

by padding, which is commonly referred to as Same Padding. The first convolutional 

layer extracts low-level features such as edges, while subsequent layers extract high-
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level features, resulting in a visualization similar to ours, which extracts different 

features such as textures, eventually learning various feature depictions of the targeted 

class embedded in the image tensor. 

4.7.1.2 ReLU Activation 

ReLU or Rectified Linear Unit is a piecewise hidden unit/ activation function that 

outputs the input directly if it is positive or else zero (when negative). This linear unit 

results in more accuracy and ease of training attesting to being a robust activator. 

Some of the advantages of using the ReLU activation function were explained by 

Albawi et al [52].  

4.7.1.3 Global Pooling 

Global Average Pooling (GAP) reduces the spatial dimensions of a 3D tensor 

ultimately dropping the number of parameters used in the model. It also helps in 

curtailing the overfitting observed. The GAP layers work as follows: the image feature 

map will be obtained and the initial size that’s let’s assume to be 𝐿 𝑥 𝐵 𝑥 𝑊 will be 

instantaneously reduced to 𝐿 𝑥 1 𝑥 1 [53]. The condensed 𝐵 𝑥 𝑊 feature map will be 

averaged, thus resulting in a simple number. 

4.7.1.4 Dropout function 

Dropout [54] refers to the neural network's arbitrary-selected neurons per layer 

dropping out. Dropout lengthens the training period while preventing data overfitting. 

Settings within correct thresholds also improve accuracy and steadily reduces loss. 

4.7.1.5 Batch Normalization 

For a consistent and computationally cost-effective training process, the input image 

set must be standardized. The Batch Normalization layer [55] in the system is 

responsible for this. This layer divides the input into mini-batches and homogenizes it. 

4.7.2 Squeeze-Excitation Network 

The Squeeze excitation networks were used to improve the performance of residual 

networks. SENets improve performance without raising computing costs by 

familiarising a building block perception for CNN. By introducing supplementary 

parameters, they directly influence the network and its layers, adaptively modifying 
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the weights of every feature map in the channels of the convolutional block. The use 

of weights dramatically improves the sensitivity to advantageous map features that 

will be exploited in subsequent transformations. Recalibration filter replies and global 

responses are also supplied before the network is sent into the next transformation. 

The "Squeeze" and "Excitation" phases are effective in accomplishing this. 

4.7.2.1 Squeeze 

The basic idea of the squeeze phase is to reduce the spatial distribution of the feature 

maps using various feature descriptors. Major methods used for this reduction in CNN 

are Global average pooling and Global Max pooling (GAP) methods. GMP preserves 

the most active pixels but has a lot of noise and is independent of the neighboring 

pixels and GAP results in smooth averaging pixelate and don’t preserve pixel 

information. GAP descriptor was selected for the squeeze phase aiming to get 

smoother pixel information. Thus, the global information of each channel is attained 

by exploiting the GAP layers resulting in the reduction of the 𝐿 𝑥 𝐵 𝑥 𝑊 of any image 

map into 𝐿 𝑥 1 𝑥 1. Thereby, the extraction of this global information and reduction of 

the spatial dimensions/ distribution of the channels is the major exertion of the 

“squeeze phase”.  

𝑧𝑐 = 𝐹𝑠𝑞(𝑢𝑐) =
1

𝐵 ×  𝑊
∑∑𝑢𝑐(𝑖, 𝑗)

𝑊

𝐽=1

𝐵

𝐼=1

#(10)  

4.7.2.2 Excitation 

In the excitation phase, the channel value from the “squeeze” phase will be assigned 

adaptive scaling weights to the respective channels. 𝜎 in the below equation represents 

the sigmoid operator, 𝛿 represents the ReLU activation operator, 𝑊1 and 𝑊2 

represent the two fully connected layers and 𝑧 represents the output of the “squeeze” 

phase. 

𝑠 =  𝐹𝑒𝑥(𝑧,𝑊) =  𝜎(𝑔(𝑧,𝑊)) =  𝜎(𝑊2𝛿(𝑊1𝑧))#(11)  

Then the 𝐿 𝑥 1 𝑥 1 tensor will be passed through a sigmoid activation subsequently 

assigning appropriate weights for respective channels of the feature map learned from 

the MLP of the excitation phase. The SE-Resnet will thereby, as mentioned above, 

add some additional layers along with its parameter increasing less than 1% of the 

computing cost of the system. SoftMax layers enforce importance on only one of the 
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channels. Thus, sigmoid was chosen as it accentuates multiple channels and the output 

sigmoid function is represented as: 

𝑥𝑐 = 𝐹𝑠𝑐𝑎𝑙𝑒(𝑢𝑐, 𝑠𝑐) =  𝑠𝑐𝑢𝑐#(12)  

4.7.3 Capsule Networks 

4.7.3.1 Capsules  

Sabour et al. [56] proposed Capsule Network or CapsNet to address the typical 

problems with CNN's (rotational invariance and failure to capture spatial hierarchical 

information) by rapidly retrieving the most critical feature information and spatial 

relationships. To avoid losing critical functionality, dynamic routing was used instead 

of pooling procedures. Also, instead of neurons, capsules were employed to efficiently 

transfer the spatial connection from one layer to the next. However, greater feature 

information in complicated datasets causes CapsNet to fail. As a result, strategically 

adding additional convolutional layers to the CapsNet is one solution to this problem. 

If the likelihood of the feature and the feature information is sent through each neuron, 

appropriate activation can be delivered. As a result, these neurons are known as 

capsules, and instead of single feature information, they produce a vector (called an 

activity vector). We can easily extrapolate different feature variants in a capsule using 

the likelihood of a feature, decreasing the training data. The product of the pose matrix 

(𝑀𝑖) represented by a gaussian distribution with the transformation (𝑊𝑖𝑗) is computed 

to calculate the vote (𝑣𝑖𝑗).  

𝑣𝑖𝑗 = 𝑀𝑖  𝑥 𝑊𝑖𝑗#(13)  

In equation 13, 𝑖 corresponds to the parent capsule and 𝑗 to the current capsule. The 

transformation is learned through back-propagation and a cost function. 

4.7.3.2 Routing 

Transferring information from one layer to another is called Routing. ReLU is used as 

the routing mechanism in fully convolutional neural networks.  

𝑦𝑖 = 𝑅𝑒𝐿𝑈 (∑𝑊𝑗𝑖  ∙ 𝑥𝑗
𝑗

+ 𝑏𝑖)#(14)  
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To transform small vector magnitudes to zero and large vector magnitudes to unit 

vectors, a squashing function is utilized instead of ReLU. EM Routing is the process 

of grouping capsules using the EM clustering algorithm. In terms of votes, parent 

capsules are anticipated in the pose matrix. Because it is based on proximity, the 

transformation matrix remains constant even when the views vary. The runtime link 

between the parent and other capsules is estimated using assignment probabilities 

(𝑟𝑖𝑗). Equation 15 shows the cost of all low-level capsules. 

𝐽𝑗
ℎ = ((ln 𝜎𝑗

ℎ) + 𝑘)∑𝑟𝑖𝑗 #(15)  

Activation (𝐴𝑗) in a particular capsule can be estimated using the inverse temperature 

parameter (𝜆) and parameters iteratively estimated using EM Routing by equation 16.  

𝐴𝑗 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (λ (𝑏𝑗  −  ∑𝐽𝑗
ℎ

ℎ

))#(16)  

The data points fit into a gaussian model and 𝐸 and 𝑀 steps are triggered alternatively 

iterating for 𝑡 steps. The Gaussian model is updated using the M step based on the 𝑟𝑖𝑗 

initialized (distributed uniformly) which will then be reshaped to form the pose matrix 

of the parent capsule. The 𝑟𝑖𝑗 is recomputed using the E-step for every data point.    
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CHAPTER 5 

OUR METHODOLOGY 

5.1 Sensor Fusion 

Odometry-based control has been established for determining the most reliable fused 

data results. The odometry model is defined as: 

(
𝑥′

𝑦′

𝜃′
) = (

𝑥
𝑦
𝜃
) + (

𝛿trans cos(𝜃 + 𝛿rot 1
)

𝛿trans sin (𝜃 + 𝛿𝑟𝑡1)

𝛿rot 1
+ 𝛿𝑟𝑜𝑡2

) 

⏟                    
𝑔(𝑢𝑡,𝑥𝑡−1)

+  𝒩(0, 𝑅𝑡)#(17)  

The motion model has 3 components for finding the new 𝑥, 𝑦, and 𝜃. All the equations 

are derived from geometry and the function 𝑁 is associated with the noise in the 

motion model. So, this function is a nonlinear model and has to be linearized. The 

Jacobian of the motion mode with respect to the state is found to be: 

𝐺𝑡 =
𝛿𝑔(𝑢𝑡, 𝜇𝑡−1)

𝛿𝑥𝑡−1
#(18)  

The result of the applied formula is: 

𝐺𝑡 = (

1 0 −𝛿trans sin(𝜃 + 𝛿𝑟𝑜𝑡1)

0 1 𝛿trans cos(𝜃 + 𝛿rot 1)

0 0 1

)#(19)  

Then we have to find the Jacobian of the matrix with respect to the control that is 𝑈. 

𝑉𝑡 =
𝛿𝑔(𝑢𝑡, 𝜇𝑡−1)

𝛿𝑢𝑡
#(20)  

The result of the applied formula is: 

𝑉𝑡 =  (

−𝛿trans sin(𝜃 + 𝛿rot 1
) cos(𝜃 + 𝛿rot 1

) 0

𝛿trans cos(𝜃 + 𝛿rot 1
) sin(𝜃 + 𝛿rot 1

) 0

1 0 1

)#(21)  

Next is the observation or measurement model. In our case, it is a range bearing model 

which has 2 terms (range, yaw) with respect to the sensor. So, the equation is as 

follows, 
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𝑧𝑡
𝑖 = (

𝑟𝑡
𝑖

𝜙𝑡
𝑖
) =  (

√(𝑚𝑗,𝑥 − 𝑥)
2
+ (𝑚𝑗,𝑦 − 𝑦)

2

atan 2(𝑚𝑗,𝑦 − 𝑦,𝑚𝑗,𝑥 − 𝑥) − 𝜃

)

⏟                      
ℎ(𝑥𝑡,𝑚)

+𝒩(0, 𝑄𝑡)#(22)  

The function is nonlinear and the function 𝑁 is the noise associated with the 

measurement model. The measurement model is then linearized around a mean 

position 𝑢𝑡. Jacobian of the measurement model with respect to the state vector is 

found using the formula, 

𝐻𝑡
𝑖 =

𝛿ℎ(𝜇
−

𝑡, 𝑚)

𝛿𝑥𝑡
#(23)  

The result of the applied formula is: 

𝐻𝑡
𝑖 =

(

 

−
𝑚𝑗,𝑥 − 𝜇𝑡,𝑥

√𝑞
−
𝑚𝑗,𝑦 − 𝜇𝑡,𝑦

√𝑞
0

𝑚𝑗,𝑦 − 𝜇𝑡,𝑦

𝑞
−
𝑚𝑗,𝑥 − 𝜇𝑡,𝑥

𝑞
−1
)

 #(24)  

where 𝑞 = (𝑚𝑗,𝑥 − �̅�𝑡,𝑥)
2
+ (𝑚𝑗,𝑦 − �̅�𝑡,𝑦)

2
 

Hence, we linearized the measurement state equation, and also, we derived all the 

necessary parameters to apply the Extended Kalman Filter. The results of the 

Extended Kalman Filter algorithm are explained in the right order in the following. 

Algorithm EKF Localization (𝝁𝒕−𝟏, 𝚺𝒕−𝟏, 𝒖𝒕, 𝒛𝒕, 𝒄𝒕,𝒎) : 

𝜃 = 𝜇ℓ−1, 𝜃#(25)  

𝐺𝑡 and 𝑉𝑡 from equations (19) and (20) is inputted here. 𝑀𝑡 represents the 

uncertainties and noises produced when a movement occurs inside the system. 

𝑀𝑡 = (
𝛼1𝛿r0𝑡1

2 + 𝛼2𝛿trans
2

0
0

0
𝛼3𝛿trans 

2 + 𝛼4(𝛿rot 2
2 + 𝛿rot 2

2 )

0

 
0
0

𝛼1𝛿rot 1
2 + 𝛼2𝛿trans 

2
)#(26) 

Equation X indicates the propagation step, where the mean estimated measurement is 

calculated, 𝜇𝑡 − 1 is the mean estimate at time 𝑡 − 1 and the matrix represents the 

model equation of the 𝑔 function. 

𝜇𝑡 = 𝜇𝑡−1 + (

𝛿trans cos(𝜃 + 𝛿rot1)

𝛿trans sin(𝜃 + 𝛿rot1)

𝛿rot1 + 𝛿rot2

)#(27)  
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Then, the covariance matrix which depends on the covariance at 𝑡 − 1 step and the 

calculated Jacobians is updated. The propagation of the uncertainties is also 

transferred from 𝑡 − 1 to 𝑡 because if the robot is more uncertain at 𝑡 − 1 step, then it 

is also more uncertain at 𝑡.  

Σ𝑡 = 𝐺𝑡Σ𝑡−1𝐺𝑡
𝑇 + 𝑉𝑡𝑀𝑡𝑉𝑡

𝑇#(28)  

Then comes the measurement step of the features present in the robot environment. If 

there are 𝑛 features/ landmarks in the environment, then there are 𝑛 update iterations.  

𝑄𝑡 = (
𝜎𝑟
2 0

0 𝜎𝜙
2)#(29)  

A loop is initialized here. For all observed values, 

 𝑧𝑡
𝑖 = (𝑟𝑡

𝑖, 𝜙𝑡
𝑖)
𝑇
 𝑑𝑜#(30)  

𝑗 =  𝑐𝑡
𝑖#(31)  

𝑞 = (𝑚𝑗,𝑥 − �̅�𝑡,𝑥)
2
+ (𝑚𝑗,𝑦 − �̅�𝑡,𝑦)

2
#(32)  

Equation (33) calculates the expected measurement of the robot at time 𝑡 which is 

calculated by the measurement state model. 

�̂�𝑡
𝑖 = (atan 2(𝑚𝑗,𝑦 − �̅�𝑡,𝑦, 𝑚𝑗,𝑥 − �̅�𝑡,𝑥) − �̅�𝑡,𝜃)#(33)  

Then comes the correction step, wherein first we calculate the Kalman gain of the 

system to find the new estimated mean and the new estimated covariance based on the 

weights of the uncertainties produced by the motion model and the measurement 

model. 𝐻𝑡
𝑖 from equation (23) is inputted here. 

𝑆𝑡
𝑖 = 𝐻𝑡

𝑖Σ̅𝑡𝐻𝑡
𝑖𝑇 + 𝑄𝑡#(34)  

𝐾𝑡
𝑖 = Σ̅𝑡[𝐻𝑡

𝑖]
𝑇
[𝑆𝑡
𝑖]
−1
#(35)  

�̅�𝑡 = �̅�𝑡 + 𝐾𝑡
𝑖(𝑧𝑡 − �̂�𝑡

𝑖)#(36)  

Σ̅𝑡 = (𝐼 − 𝐾𝑡
𝑖𝐻𝑡

𝑖)Σ̅𝑡#(37)  

Then, 𝜇𝑡 and Σ𝑡 are returned as output. All the steps are recursive and iterated to get 

the best prediction of the localization for the robot based on the sensor measurement. 
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5.2 Localization 

We require a very computationally efficient system for localization in a flying system 

since all of the subsystems must be handled onboard, and complete all of the 

operations with limited computation resources. ORB SLAM is the best option for the 

specified work case since it can work in low-light and high-dynamic-range 

environments. The ORB feature descriptor's efficiency allows for improved picture 

matching and faster calculation. As a result, it is the greatest solution for quadcopter 

localization in a densely crowded environment. 

Thus, ORB2 SLAM was used to localize the robot in the environment, which uses 

ORB features to analyze the environment and match features between frames to 

triangulate and localize itself. ORB2 SLAM produces sparse mapping and odometry, 

which are displayed using the RVIZ tool in Figure 14. The ORB features spread in the 

environment are represented by green dots contained by squares, and the sparse map 

associated with the features point cloud is represented by the sparse map. 

 
(a) (b) 

Figure 14 Implementation of ORB-based Localization 

Figure 14 represents the simulation of a quadcopter in a gazebo simulator to localize 

itself in the global environment using the front-facing camera. The green dots thus 

represent the features as explained in the previous paragraph and it is clear they are 

edges, corners with texture variations, thus properties of identifying ORB features are 

established. 

The ORB features extracted from the visual sensor are fused using sensor fusion with 

inertial sensors, thereby significantly increasing the reliability of the localization data. 

More details on how sensor fusion has been done in this work are explained in Section 

5.1. 
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5.3 Obstacle Avoidance 

In this section, we'll go through the proposed architectures for the learning-based and 

learning-free approaches, as well as how to most effectively avoid obstacles 

efficiently. In addition, the data obtained while executing the learning-free strategy 

was used to learn a policy for the learning-based approach. Image frames, as well as 

the succeeding pose and principal yaw angle, are included in the sent data for learning 

the policy. 

5.3.1 Learning-free Approach 

In this work, a simple yet efficient learning-free obstacle avoidance system is 

proposed for autonomous navigation. Perception, path planning, and control modules 

are included in the algorithm, as they are in any other technique. Figure 15 illustrates 

the design of the proposed system. The main advantages of this system are that it has 

adaptive velocity control and that it only uses one sensor for avoidance. Every module 

of the proposed system is thoroughly detailed in the remainder of this section.  

 
Figure 15 Architecture of learning-free approach 

Figure 16 shows the perception module built from scratch for learning-free obstacle 

avoidance. Initially as explained earlier, a monocular depth estimation approach called 

MonoDepth2 [57] was used to estimate the depth from monocular images learned in 

an unsupervised manner. Then, using simple extrapolation and the ORB localization 

data, we found the scale factor with respect to the world. This data was then used to 

calculate the point cloud representation of the image. 
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(a) (b) (c) 

Figure 16 Proposed perception module 

Figure 17 shows the predicted point clouds projected into a 2D grid map with 𝑥 and 𝑧 

values (to visualize from the top). The point clouds are then encircled by random 

borders. Then the boundaries are constrained based on overlap features and proximity. 

After the boundaries are created, a final experimental grid map with the perceived 

obstacle borders is created. This information is subsequently fed as input for the other 

navigation modules (planning and control). 

 
Figure 17 Selecting the obstacle boundary 

The RRT exploration is performed in the resulting final experimental grid to discover 

the most efficient path to the objective coordinate. Instead of inserting RRT nodes at 

random, the cost function given below in Equation (38) is used to select them. This 

function act as a simple heuristic for path planning. Because the placement of nodes is 

not random, the system's computing cost is greatly decreased. 

𝐽 =  

[ 𝑝𝑖+𝑝𝑟𝑒𝑣𝑖 ∗ 4 + (
1

𝑑𝑐𝑢𝑟−𝑑𝑒𝑠
+ 

1
𝑑𝑑𝑒𝑠−𝑔𝑜𝑎;

) ∗ 2 ]

6
#(38)
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In equation (38), 𝑝 represents the pixel intensity, 𝑑𝑐𝑢𝑟 represents the current pose, 

𝑑𝑑𝑒𝑠 represents the destination distance from the current pose and 𝑑𝑔𝑜𝑎𝑙 represents the 

distance between the goal and the current position. 

Once, the optimized control points to reach the goal are found using the RRT path 

planning algorithm, the MPC control algorithm is used for navigation. The 

mathematical modeling designed for using MPC for our system is detailed in the 

following pages. 

 

Figure 18 Navigation strategy formation 

With the kinematics and the dynamics model for a quadcopter, we will be able to 

estimate the state variables of the system. Equations (39) – (55) represent the state 

variables of an agile quadcopter and are derived using the configuration of the 

quadcopter and the global reference frame of the IMU. 

�̈� =
−1

𝑚
[𝑘𝑡𝑥�̇� + 𝑢1(sin𝜙 sin𝜓 + cos𝜙 cos𝜓 sin 𝜃)]#(39)  

�̈� =
−1

𝑚
[𝑘𝑡𝑦�̇� + 𝑢1(sin𝜙 cos𝜓 − cos𝜙 sin𝜓 sin 𝜃)] #(40)  

�̈� =
−1

𝑚
[𝑘𝑡z �̇� − 𝑚𝑔 + 𝑢1 cos𝜙 cos 𝜃]#(41)  

�̇� =
−1

𝐼𝑥
[𝑘𝑟𝑥𝑝 − 𝑙𝑢2 − 𝐼𝑦𝑞𝑟 + 𝐼𝑧𝑞𝑟 + 𝐼𝑟𝑞𝜔𝑟]#(42)  

�̇� =
−1

𝑙𝑦
[−𝑘𝑟𝑦𝑞 + 𝑙𝑢3 − 𝐼𝑥𝑝𝑟 + 𝐼𝑧𝑝𝑟 + 𝐼𝑟𝑝𝜔𝑟] #(43)  

�̇� =
−1

𝐼𝑧
[𝑢4 − 𝑘𝑟𝑧𝑟 + 𝐼𝑥𝑝𝑞 − 𝐼𝑦𝑝𝑞]#(44)  

And the relationship between the Euler angles and angular velocity is expressed in the 

equations below 

𝜙 = 𝑝 + r cos𝜙 tan 𝜃 + q sin𝜙 tan 𝜃 #(45)  
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�̇� = q cos𝜙 − r sin 𝜙 #(46)  

𝜓 = 𝑟
cos𝜙

tan 𝜃
+ 𝑞

sin𝜙

cos 𝜃
#(46)  

The dynamic model of the quadcopter can be defined from four control inputs 

(𝑢 =  [𝑢1𝑢2𝑢3𝑢4]
𝑇) and twelve state variables. The quadcopter being a non-linear 

system, can be modeled as shown in Equation (47).  

�̇� = 𝑓((𝑥), 𝑢(𝑡))#(47)  

When we linearize the dynamic model of the quadcopter under hovering conditions 

where the nominal states and control inputs are 𝒳𝑇 and 𝓊𝑇 , we get  

Δ𝑥𝑘+1 = 𝐴Δ𝑥𝑘 + 𝐵Δ𝑢𝑘#(48)  

Δ𝑦𝑘 = 𝐶Δ𝑥𝑘 + 𝐷Δ𝑢𝑘#(49)  

Δ𝑥𝑘 = 𝑥𝑘 − 𝑥𝑇#(50)  

Δ𝑢𝑘 = 𝑢𝑘 − 𝑢𝑇#(51)  

Upon using the linearized model, we predict the state variables over the time horizon 

using a linear quadratic estimator to estimate the change in the system for a control 

input 𝑢. 

Δ𝑥𝑘+𝑁 = 𝐴
𝑁Δ𝑥𝑘 + 𝐴

𝑁−1𝐵Δ𝑢𝑘 + 𝐴
𝑁−2𝐵Δ𝑢𝑘+1 +⋯+ 𝐴𝐵Δ𝑢𝑘+𝑁−2 + 𝐵Δ𝑢𝑘+𝑁−1#(52) 

Δ𝑦𝑘+𝑁 = 𝐶𝐴
𝑁Δ𝑥𝑘 + 𝐶(𝐴

𝑁−1𝐵Δ𝑢𝑘 + 𝐴
𝑁−2𝐵Δ𝑢𝑘+1 +⋯+ 𝐴𝐵Δ𝑢𝑘+𝑁−2 + 𝐵Δ𝑢𝑘+𝑁−1)#(53) 

The equation can be re-written into the matrix form as represented below with these 

equations. Now we designed an MPC-based control for a quadcopter to traverse in a 

safe and agile manner between points A to B using matrixes derived from equations 

(39) to (55). 

(

 
 

Δ𝑥𝑘
Δ𝑥𝑘+1
Δ𝑥𝑘+2
⋮

Δ𝑥𝑘+𝑁−1)

 
 
=

(

 
 

𝐼
𝐴
𝐴2

⋮
𝐴𝑁−1)

 
 
Δ𝑥𝑘 +

(

 
 

0 0 ⋯ 0 0
𝐵 0 ⋯ 0 0
𝐴𝐵 𝐵 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

𝐴𝑁−2𝐵 𝐴𝑁−3𝐵 ⋯ 𝐵 0)

 
 

(

 
 

Δ𝑢𝑘
Δ𝑢𝑘+1
Δ𝑢𝑘+2
⋮

Δ𝑢𝑘+𝑁−1)

 
 
#(54)  

(

 
 

Δ𝑦𝑘
Δ𝑦𝑘+1
Δ𝑦𝑘+2
⋮

Δ𝑦𝑘+𝑁−1)

 
 
=

(

 
 

𝐶 0 0 ⋯ 0
0 𝐶 0 ⋯ 0
0 0 𝐶 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝐶)

 
 

(

 
 

Δ𝑥𝑘
Δ𝑥𝑘+1
Δ𝑥𝑘+2
⋮

Δ𝑥𝑘+𝑁−1)

 
 
+

(

 
 

𝐷 0 0 ⋯ 0
0 𝐷 0 ⋯ 0
0 0 𝐷 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝐷)

 
 

(

 
 

Δ𝑢𝑘
Δ𝑢𝑘+1
Δ𝑢𝑘+2
⋮

Δ𝑢𝑘+𝑁−1)

 
 
#(55) 
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Thus, the complete navigation system using a learning-free approach has been 

explained along with the novelties and advantages of this approach. 

5.3.2 Learning-based Approach 

For the learning-based approach, we have used a type of imitation learning idea called 

Behavioral Cloning (BC). The idea behind BC is very similar to supervised learning. 

A mapping strategy is approximated with a set of inputs to derive the desired outputs. 

That is, input images and poses are passed as input to map the respective yaw angles. 

Then, motor PWMs are estimated for efficient navigation in an unknown 

environment. 

 
Figure 19 Architecture of learning-based approach 

Firstly, the dataset is gathered to train a policy that can map images and pose data to 

the appropriate yaw angle to avoid any collisions. This dataset gathering is carried out 

using a learning-free method. The data was captured and stored locally throughout the 

flight, and then passed to the neural network to find a suitable policy. This policy will 

then be applied in real-time to determine the UAV's best yaw angle. 

The calculated yaw angle is subsequently provided to the control system block, which 

calculates the appropriate motor PWMs for the desired yaw angle successfully. The 

neural network deployed here takes advantage of the squeeze-excitation operators in 

the inspection module, extracting the most important information from the frame and 

calculating the most important yaw direction for navigation. 

Table 2 Training data specification 

 Scale Unit 

Image Resolution 120 x 160 pixels 

Sampling rate 20 fps 

Channel grayscale - 

Duration 150 minutes 
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Control 3 (Yaw Right, Left, Straight) - 

Table 2 shows the data specifications taken into account for training. Grayscale 

images were used to reduce the computation significantly. Also, yaw directions were 

estimated to traverse in the environment instead of finding the angle itself, which was 

less reliable comparatively. 

Different baseline networks including Residual Network, Inception Network, Alex 

Network VGG-16, and so on were tested. SENets improved the performance of all 

these baseline networks. Best results were obtained when SENets were fused with 

Residual baseline. Thus, we will be using SE-ResNet for training the dataset obtained 

from the learning-free approach. The specifics of the SENets used are explained in the 

upcoming section. 

5.4 Inspection 

 

Figure 20 Proposed Sense-Switch-Act Mechanism 

To maintain a balance between computation and accuracy, a novel sense-switch-act 

mechanism has been proposed for the inspection tasks as shown in Figure 20. At first, 

the desired target classes are parsed to the task-specific system. That is, if the task is 

forest fire, the target/ desired class will be fire. Then, the frame is sent to the image 

classification sub-module which identifies the different classes observed in the scene. 

Then, the classes obtained are cross verified if it matches the target classes. If yes, it is 

passed to the object detection sub-module which locates the exact coordinates of the 

target class. If there are no matches obtained, the image classification sub-module 

redirects to find the classes in the next frame, and the loop continues. More 

information on the sub-modules and the networks adapted are discussed in the 

following subsections in detail. 
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5.4.1 Image Classification  

A novel network that multi-enhances the features, that is, both spatial and channel-

wise information at each layer with deep convolutional layers (SENets) and CapsNet 

is proposed termed as ME-CapsNet (Multi-Enhanced Capsule Networks). In addition, 

improvements in the Squeeze phase of the originally proposed SENets by using 

Stochastic Spatial Sampling Pooling (S3P) are done to reduce feature information 

losses, computation overload and training time when compared to the originally used 

average pooling operation. 

 
Figure 21 Architecture of the proposed image classification network 

Our architecture predominantly has three blocks to multi-enhance the feature 

relationship of CNN: the SE Primary Capsule (SE-PC) block, SE Classification 

Capsule (SE-CC) block, and the Mask by Layer (MbL) block. That is, an input image 

in the form of tensor (𝑈) is fed to our network, which first converts into a tensor upon 

transformation (𝑈𝑡𝑟). Then, 𝑈𝑡𝑟 is sent through the SE-PC block wherein Squeeze and 

Excitation operation is done which results in 𝑈𝑡𝑟
0  which has recalibrated weights based 

on channel dependence. 𝑈𝑡𝑟
0  is then passed through the primary capsule layer. The 

Squeeze and Excitation operation is done three times continuously to get the improved 

calibrated weights for the corresponding channels. The Squeeze operation is done 

using S3P [58]. Then the output of the primary layer of the SE-PC is fed as input to 

the SE-CC wherein features are highlighted using SENets first and then sent to the 

classification module. Then, we designed the MbL block inspired by the works of 

Huang et al. [59] for reconstructing the output capsules from the probability vectors 

obtained from the SE-CC block. Advantages of including the reconstruction block 

include regularization and the ability to regenerate data. 

5.4.2 Object Detection  

Object detection using YOLO detectors was used to locate the obstacles. Object 

detection was leveraged only to find the exact coordinate of the task-specified classes. 
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In other words, once a presence of a particular class is sensed by the image 

classification module (ME-CapsNet), we trigger the object detection sub-module to 

identify the exact location of the class in the global frame. For example, during forest 

fire operations, the UAV navigates and tries to identify the presence of fire using the 

ME-CapsNet sub-module. Once the presence of fire is sensed, the object detection 

sub-module locates the position of fire in the perceived environment. The reason to go 

with this switching mechanism is to reduce the computational cost of the system.   

 
Figure 22 Architecture of the YOLO detection approach 
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CHAPTER 6 

DATASET AND SIMULATORS 

In this section, the datasets and simulators used to test the performance of the 

proposed E2ES as modules are detailed with reasons to go with these simulators and 

datasets.    

6.1 Dataset 

6.1.1 Inspection Dataset 

MNIST [60] and FashionMNIST [61] both have 10 classes with 70,000 images of size 

28 × 28 × 1. CIFAR10 has 10 classes with 60,000 images of size 32 × 32 × 3. 

KMNIST [62] dataset has 10 classes and is a drop-in replacement of MNIST and 

FashionMNIST, consisting of 70,000 images of size 28 × 28 × 1 just like those 

datasets. For MNIST, KMNIST, and FashionMNIST datasets 50,000 images were 

used for training and 10,000 images for testing. For the CIFAR10 [63] dataset, 60,000 

images were used for training and 10,000 for testing. 

 
(a) (b) 

 
(c) (d) 
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Figure 23 Image classification datasets 

For object detection, Cityscape [64] datasets were used to test the network's 

performance. The cityscape dataset consists of 30 classes collected from 50 different 

cities around a year in different periods. It has around 25,000 annotated images. Also, 

some videos of different tasks were used to examine the performance of the ‘sense-

switch-act’ mechanism.  

 
Figure 24 Cityscape dataset 

6.1.2 Avoidance Dataset 

We built a custom dataset for learning techniques called AIR-IL using the AIRSIM 

simulator. The dataset consists of images, odometry data, and the principal axes of the 

UAV. Thus, the aim of using this dataset is for the neural network to learn a suitable 

mapping technique to find the yaw angle (principal axis) from the image and 

odometry information of the UAV. The dataset consists of 100,000 frames per 

environment with its respective odometry and yaw information. The collection of data 

was done in three different environments, a cluttered abandoned park, an Africa Forest 

environment, and urban roads. The data collected in all three environments are also 

captured in different illuminations for testing the performance of the UAV system in 

varying conditions.   
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Figure 25 KITTI dataset 

For testing the odometry results, we are using KITTI [65] benchmarked dataset. Some 

of the specs of the KITTI dataset include Grayscale frames, which consist of 22 stereo 

sequences (We have used the 1
st
 sequence which has 4,500 stereo frames), 11 

sequences with ground truth (for finding error/overlap ratios). We are experimenting 

with the 0
th

 sequence of grayscale frames (right and left frames). 

6.2. Simulator 

6.2.1 AIRSIM 

AIRSIM [66] was initially built using the Unreal Engine backbone, with recent 

releases focusing on Unity for experimentation. It is primarily built focusing on UAVs 

with add-ins for cars and more. It is widely used for AI research gathering data and 

programming in a very easy manner.  
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(a) (b) 

 

(c) (d) 

Figure 26 Different AIRSIM environments 

The above four images shown in Figure 26 are the environments used in the AIRSIM 

environment to test the performance of the UAV system. The luminosity of the 

environments has also been changed and experimented with. The environments shown 

and experimented with are Africa Env, High Mountains Env, UrbanNH Env, and 

MSBuild Env respectively. 

Python coding language can be used to communicate with the AIRSIM environment. 

There are inbuilt client packages, that can be leveraged for communicating and 

collecting data from the UAV with ease. Also, the feasibility of the simulator to 

closely replicate real-time environment conditions and the ability to alter various 

parameters, makes it stand out for robustly mimicking the UAV operation. 

6.2.2 Gazebo 

Gazebo simulator is popularly used among researchers to test robots efficiently in 

custom-built indoor and outdoor environments with both car and UAV models 

available with easy modeling and convenient interfaces.  
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Figure 27 Different Gazebo worlds 

Figure 27 shows the different worlds used for testing the performance of the obstacle 

avoidance capability of the proposed E2ES. Python programming language was used 

leveraging the Robotic Operating System (ROS). Visualization was done using an 

RVIZ visualizer.  

6.2.3 MATLAB 

MATLAB is a numeric computing and programming language that has been 

leveraged in our work especially for testing various architectures. Implementation and 

testing of various algorithms can be done in MATLAB with ease. 

   
Figure 28 Different MATLAB environments 

Figure 28 shows some simple environments used in MATLAB for testing the 

submodules, that is the path planning module’s performance with ground truth data. 

MATLAB is chosen as the software for choice for simulation since it provides an 

upper hand while working with mathematical functions especially multivariable 

mathematics related to MPC and kinodynamic planning. It is also easy to implement 
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and deploy to test with work cases and analyze the results with interactive plots and 

store the data easily. It also supports using the same MATLAB functions in python 

with the plugin. Extensive support with ROS and Gazebo simulator is provided to ease 

cross-platform direct deployment in case of real-time testing. 
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CHAPTER 7 

EXPERIMENTATION AND EVALUATION 

7.1 Image Preprocessing 

Image preprocessing was mandatory for all frames irrespective of the module 

including the obstacle avoidance module and the image classification module.  

 
(a) (b) 

Figure 29 Image Preprocessing Results 

Figure 29 shows various image preprocessors tested with the input frames. Bilateral 

filtering, Gaussian filtering, Median blurring, and 2D image filtering were some of the 

preprocessors used for comparison. Figure 29 (a) represents the number of features 

extracted from each preprocessor and Figure 29 (b) represents the computational cost 

of each preprocessor. Comparatively better results were obtained when 2D image 

filtering was used.  

7.2 Localization 

 
Figure 30 Trajectories using various feature extractors 
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Figure 30 shows the trajectories formulated in the KITTI dataset and the drift 

observed when different feature extractors were used for localization. The drift refers 

to the variation in the position variations and the pitch, roll, and yaw angles. Figure 31 

(a) compares the different feature extractor’s ability to grasp features in different 

varying lighting conditions and Figure 31 (b) shows the performance of two feature 

matches. 

 
(a) (b) 

Figure 31 Comparing feature extractors and Matchers 

In Table 3, we analyzed the computational power and storage required when each 

extractor was used for localization. Thus, we will be using ORB for localization. It has 

been noticed that ORB produces comparatively many features when compared to the 

other extractors, keeping the computation and error rate minimum. 

Table 3 Performance of the odometry approaches 

 ORB SIFT SURF KAZE AKAZE BRISK 

# Features 9920257 7880352 9121625 7647275 6038516 11324156 

Tot. time 387.1427 1035.8436 724.0894 4087.2750 922.7840 675.3332 

Tot. error  346.2213 412.6922 241.2476 164.7603 400.5994 678.8387 

Storage 317.44 1000.8 584.78 978.85 744.32 724.74 

Thus, the ORB feature extractor’s ability to extract a good quantity of features 

irrespective of the luminosity of the environment with minimum computation gives it 

an edge over other techniques. Thus, ORB is used in our works. The maximum 

number of features in 640 x 480 pixels is set at 1,000. It was observed to produce an 

average of 640 features per frame. Most features were distributed in the regions of 

maximum variations in pixel intensity 
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(a) 

 
(b) 

Figure 32 Localization results for a circular trajectory 

For analyzing the efficiency of the localization module leveraging ORB feature 

extractors, we perform a movement along with a circular and a random trajectory as it 

encompasses several rotational and translational movements as shown in Figure 32. 

Loop closure was observed with significant prediction accuracy. It was observed that 

the Root Mean Square Error (RMSE) obtained in the mentioned trajectory resulted in 

only 3.9456 for position when verified with the ground truth data obtained from GPS 

RTK.  
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7.3 Obstacle Avoidance 

7.3.1 Learning-free Avoidance 

The learning-free as explained in previous sections is split into three domains: 

perception, planning, and control. In this subsection, we will explain the work done in 

all three domains in detail starting from perception to the control system.   

 
Figure 33 Kinodynamic RRT-based navigation 

Similar to A* based kinodynamic trajectory planning a simulation of RRT-based 

kinodynamic planning was executed in a simulator-based python replicating a real-

time behavior of the quadcopter. The simulation was tested in multiple obstacle maps 

with the number of obstacle blocks ranging from 4 to 7. As the result of the 

simulation, it was concluded RRT is better than A* for kinodynamic planning in terms 

of performance and reliability of finding the path. The average number of paths 

explored during the exploration was 67 and the average time it took to find the most 

reliable path was about 0.2 Seconds to complete the exploration. With the above info, 

it was concluded that RRT-based simulation yielded better performance. 
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(a) 

 
(b) 

Figure 34 Kinodynamic A*-based navigation 

Figure 34 shows experiments performed with a defined quadcopter model in the 

MATLAB simulator. We use a kinodynamic planner along with the A* path planning 

algorithm to control the quadcopter in an agile manner from start to goal position. 

Several maps (Figure 34 (a) and (b)) were initialized in the planner to test the agility 

of the proposed global planner. The results were analyzed using the position vs time 

and velocity vs time graphs. It was also ensured that the slope of the curve at any 

given point of time was less than 0.4 thereby smooth trajectories can be generated. 
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The red trajectory is the predicted trajectory using the A* path planning and 

kinodynamic trajectory generation, while the blue trajectory is the actual trajectory 

taken by the quadcopter over the constraints. 

A huge overlap of the expected and actual trajectory was observed with several test 

cases as shown in Figure 34 being highly challenging since the agility of the 

quadcopter is tested to the maximum potential since the obstacles are placed in a very 

close manner. The quadcopter performed very well in the aforementioned test case 

with RMSE in the expected trajectory and the actual trajectory is estimated to be 

0.66823. An average of 62 paths were explored and the average time of exploration is 

estimated to be 6.2 seconds. 

A* algorithm compared to RRT is relatively slow since it checks all the nodes and all 

nearest edges to the start node for finding the most suitable path. While RRT explores 

the nearest node while keeping the computational cost low most of the time. The 

results of the previous experiments concluded that the path derived from A* is 

complete and the shortest route chosen with the time taken to find is comparatively 

higher. RRT has the upper hand in finding the shortest path with limited resources and 

in less time while A* has the most reliable path for the traversal 

7.3.3 Learning-based Avoidance 

As explained in the previous sections, imitation learning using SE-ResNet is used for 

obstacle avoidance. The performance of the complete proposed learning-based 

approach adopted and the quality of the network used is evaluated in this section. 

Also, different networks were experimented with to increase the robustness of the 

system. 

 
Figure 35 Trajectory taken by Learning-based UAV avoidance 
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Figure 35 shows the result of the learning-based technique equipped using the SE-

ResNet network. The map used is Map4 as arranged in the following pages. Similarly, 

three more maps were formed to test the algorithm with different obstacle patterns. 

 
Figure 36 Prediction accuracy of the trained model 

Figure 36 shows the prediction accuracy of the model trained using the input data 

from the learning-free technique. The output classes include yaw right, yaw left and 

yaw straight. These are directions, instead of angles, so that the system tends to be 

more reliable. Thereby locally navigating in environments as shown in Figure 34, 

results in better performance in terms of computation and reliability. It can be noted 

that more than 89% of the predicted results tend to match the true labels. 

Table 4 Computation time for learning 

 Computation Time 

FCN 7.45 

ME-CapsNet 17.34 

SE-ResNet 15.39 

Table 4 corresponds to the computational time required for the 3 different networks 

trained. FCN seems to be the fastest because it doesn’t use dense layers, which 

ultimately results in less number of parameters. Capsule layers in the ME-CapsNet 

slightly increase the computation when compared to SE-ResNets.  

Table 5 Performance of the networks on different test maps 

 FCN ME-CapsNet SE-ResNet 

Map1 10 45 85 

Map2 15 50 90 

Map3 10 60 75 

Map4 15 55 90 
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Table 5 represents the performance of the network when put through different maps. 

Map 1 and Map 3 are simple maps, while Map 2 and Map 4 are a bit complex maps, 

with a greater number of obstacles in the way. Each network is tested 10 times on 

each map and the mean average is taken as the performance factor. FCN has 

performed the least effective of the 3 networks, which implies how important feature 

extraction is, for getting better performance. SE-ResNet is better than ME-CapsNet in 

terms of the performance factor and computation as shown in Table 4. 

7.4 Inspection 

As explained in Section 5.3, the mechanism behind the inspection module of the 

system leveraging the sense-switch-act mechanism, we will be proving the reasons 

behind the mechanism in terms of computational cost and the accuracy of both the 

models in separate subsections. 

Table 6 Computation analysis of inspection module 

 Classification Detection 

Forest Fire 1.27 2.34 

Search & Rescue 1.34 2.79 

Agricultural Burns 1.18 2.21 

As observed in Table 6, object detection is computationally expensive. Thus, instead 

of relying on object detection in the entire course (where there could be no obstacles), 

we have used the above-mentioned mechanism to save computation significantly. 

Also, even if a class is sensed from the image classification sub-module, the object 

detection module will only be triggered in intervals to prevent similar frame detections 

as a result of hovering or slow speed. This was done to prevent redundancy in the 

observed detection classes. 

7.4.1 Image Classification 

ME-CapsNet easily outperforms the research works on CapsNet in CIFAR10 datasets, 

thus demonstrating its ability to capture important features and routes without feature 

loss. The results can be visualized in Table 7. Also, 1.23% better performance in terms 

of accuracy was estimated using our model with the FashionMNIST dataset. Though 

the difference in accuracy between the proposed approach and the previous best 

approach is only 0.13%, computationally our approach tends to be very 
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computationally cheaper. This is because of the less computational increase when 

using deep convolutional layers via SENets in between the CapsNet layers 

strategically with well-defined parameters.  

Table 7 Comparison of the various proposed network 

 Accuracy # Of Params Recon. 

HitNet [36] 

MS-CapsNet [67] 

CapsNet Baseline 

DeeperCaps [68] 

DCNet [69] 

DA-CapsNet [37] 

Cv-CapsNet++ [70] 

AR-CapsNet [71] 

Sabour et al. [56] 

DCNet++ [69] 

ME-CapsNet (Ours) 

73.30 % 

75.70 % 

79.24 % 

81.29 %  

82.63 % 

85.47 % 

86.70 % 

88.94 % 

89.40 % 

89.71 % 

89.84 % 

8.89 M 

11.20 M 

11.98 M  

5.81 M 

11.88 M 

7 M 

2.69 M 

9.60 M 

14.36 M 

13.4 M 

7.24 M 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

Figure 37 shows the training and validation accuracy of ME-CapsNet when tested 

with state-of-the-art datasets. Figure 37 (a) and (b) correspond to MNIST datasets, 

Figure 37 (c) and (d) correspond to the FashionMNIST dataset, Figure 37 (e) and (f) 

correspond to the CIFAR10 dataset, and Figure 37 (g) and (h) correspond to 

KMNIST. 

 
(a) (b) 
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(c) (d) 

 
(e) (f) 

 
(g) (h) 

Figure 37 Evaluation of the network using various datasets 

In this subsection, various backbone architectures including residual networks with 

various levels of layers, inception networks, and VGG networks are fused as input 

layers for ME-CapsNet and the respective test accuracy is logged and compared 

systematically for four different datasets. 

Table 8 Comparison of various backbone architectures 

 MNIST FashionMNIST CIFAR10 KMNIST 

ResNet-50 

ResNet-101 

ResNet-152 

VGG-16 [72] 

Inception [73] 

99.57 

99.83 

99.78 

98.54 

98.63 

94.85 

95.63 

95.91 

95.11 

95.38 

88.87 

89.37 

89.84 

87.72 

88.98 

96.75 

97.84 

97.11 

96.49 

97.34 

7.4.2 Object detection 

We have tested the performance of our object detection module in different scenarios 

with diverse illumination conditions and it can be visualized in Figure 38. Testing was 

done targeting forest fire detection, agricultural burn detection, and search and rescue 

operations. We have obtained about 90%+ accuracy with frames in different 

environments experimented with.  
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 38 Object detection using the YOLO model 

In Figure 38, (a) and (b) represents fire detection for a forest fire or agricultural burns, 

(c) and (d) represent person detection in search and rescue operations, and (e) and (f) 

represent defect detection in construction and bridges. Thus, with these examples, the 

detection capability of the system is proved to be accurate. The system has been 

building such a way that, just by loading the appropriate previously trained model, the 

detection will take place based on the task. 
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(a) (b) 

 
(c) (d) 

Figure 39 Evaluation of object detection 

In Figure 39, evaluation matrices are used to prove the efficiency of the object 

detection submodule. Figure 39 (a) – (d) correspond the performance of the object 

detection module with fire, person, poles, and cracks respectively. Precision and recall 

are the two-evaluation metrics used here. Precision is the intersection of the detected 

box and object divided by the detected box. Meanwhile, recall is the intersection of 

the detected box and object divided by the object.  
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CHAPTER 8 

CONCLUSION 

8.1 Contributions 

An end-to-end autonomous navigation system for UAVs has been proposed in this 

thesis, which can efficiently traverse in GPS denied, unstructured environments by 

leveraging visual and inertial sensors only. The system is equipped with powerful 

deep neural network pipelines for obstacle avoidance and inspecting environments. 

The inspection module is a plug-and-play module, which is based on a novel sense-

switch-act mechanism and can be altered based on the task in a modular way.  

Two navigation modules are designed, one based on learning and another using a 

traditional learning-free approach. For the learning-free approach, monocular depth 

estimation via unsupervised learning was used for perceiving the environment, and 

point clouds were extracted to form the 2D occupancy grid. Over the grid, path 

planning using kinodynamic RRT planning and MPC control system was adapted for 

efficient navigation. The training data for the learning-based approach was procured 

during navigation via the learning-free avoidance approach, thereby learning a policy 

for the learning-based approach from its data.  

The reliability of the proposed system has been tested by taking three tasks - search 

and rescue operations, inspection/ monitoring, and forest fire tasks. The inspection 

module is based on a sense-switch-act technique, where the object detection 

submodule is triggered only if a particular task-specific class is sensed by the 

classification module, thereby reducing computation significantly. 

A custom localization framework has been designed leveraging the ORB SLAM 

technique. Sensor fusion using inertial sensors on the ORB features was done using 

Extended Kalman Filters, thereby significantly improving the reliability of the system 

in unstructured or cluttered environments. 

A novel proposed neural network called ME-CapsNet is used for image classification, 

which was designed by strategically fusing the Squeeze-Excitation Network and 

Capsule Network over the Residual Network backbone. For the learning-based 

obstacle avoidance approach, the data from the traditional learning-free approach was 



58 

 

sent through the Squeeze-Excitation Network to learn the policy thereby mapping the 

input to the yaw directions from the UAV perspective.  

The UAV system is made agile and is highly capable of navigating in unstructured 

environments, which gives an added benefit of navigating at heights as low as 150 cm 

from the ground level. It in turn gives a proper understanding of scenes without any 

required rotation variants. At that height, it has been observed that the system was able 

to evade 95% of the obstacles (trees, people, trucks, houses, poles) with the equipped 

learning-based approach.  

8.2 Future Works 

We aim to create efficient mapping techniques in the future to fuse with the UAV 

system proposed here. This can assist in more robust surveillance tasks and optimizes 

the navigation of UAVs (shortest time). Also, removing dynamic features from the 

projected map and reducing the outlier using efficient sampling using RANSAC 

algorithms is one future research direction. 

The implementation used here is based only on static obstacles, but in real-time, we 

can expect dynamic obstacles as well like birds, kites, etc. Thus, leveraging optical 

flow and semantic segmentation approaches can be used to understand the trajectory 

of the dynamic obstacle and evade it accordingly. This sub-module could easily be 

merged with the perception sub-module used in the avoidance module, considering 

our architecture is designed in a very modular manner. 

With several improvements in model predictive control, one possible improvement 

could be in implementing a learning-based model predictive control. Adding 

intelligence to a powerful controller can make it more powerful and efficient and 

make the process of autonomous navigation safer and more agile.  

Another possible research direction for the future could be introducing optimization 

techniques that can effectively reduce the reprojection error caused by odometry using 

visual sensors. They result in an accumulation of errors in the localization results, 

thereby making significant drift. Thus, improvements/ optimizations can be done to 

reduce the drift in the odometry data. 
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Another improvement to the system could be to implement the process on a 

Neuromorphic camera or an event camera. Event Camera is a novel bio-inspired 

vision sensor that outputs spikes when it observes a change in pixel brightness 

intensity. Instead of capturing images at a fixed rate, they asynchronously measure 

per-pixel brightness changes and output a stream of events that encode the time, 

location, and sign of the brightness changes. Considering the low latency requirement 

and high agile maneuverability, the Aerial system is equipped with an Event/ 

Neuromorphic camera to perform the process of navigation and inspection. 
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APPENDIX A 

Codes made towards the completion of the thesis objective can be obtained from this 

appendix. 

1. https://github.com/E2ES-THESIS/QuadX - Consists of ROS-based UAV built 

with inbuilt sensors for the purpose of the thesis. 

2. https://github.com/E2ES-THESIS/Custom-Visual-Odometry - Custom Monocular 

Visual Odometry package built from scratch and is linked to an evaluation 

package. 

3. https://github.com/E2ES-THESIS/Custom-RTABMAP - Implementation of 

custom RTABMap SLAM technique using a mobile robot to test the mapping 

accuracy of the technique in indoor environments. 

4. https://github.com/E2ES-THESIS/Obstacle-Avoidance-RRT - Implementation of 

UAV obstacle avoidance using the learning-free technique. 

5. https://github.com/E2ES-THESIS/Object-detection - Object detection using 

YOLO and MobileNetSSD. 

6. https://github.com/E2ES-THESIS/Monocular-depth-estimation - Implementation 

of monocular depth estimation in real-time using Jetson Xavier Board and 

Logitech Cam. 

7. https://github.com/E2ES-THESIS/Obstacle-Avoidance - Obstacle Avoidance 

using the learning-free algorithm, that globally plans the suitable trajectory and 

uses adaptive velocity based on free spaces in the UAV perspective. 

8. https://github.com/E2ES-THESIS/A-Star-Path-Planning - Custom implementation 

of 2D A* path planning algorithm using python.  

9. https://github.com/E2ES-THESIS/Image-Classification - Various implementations 

of image classifications are split and logged in this repository. 

10. https://github.com/E2ES-THESIS/KLT-Mono-Odometry - Codebase for 

Monocular odometry using OpenCV, LK Feature tracking and 5-point algorithm. 

11. https://github.com/E2ES-THESIS/Object-Detection-PKG-ROS - ROS Node for 

custom object detection written in python. 

12. https://github.com/E2ES-THESIS/ORB-BFMatcher - Testing code for ORB 

feature descriptor and Brute-Force Matcher. 

https://github.com/E2ES-THESIS/QuadX
https://github.com/E2ES-THESIS/Custom-Visual-Odometry
https://github.com/E2ES-THESIS/Custom-RTABMAP
https://github.com/E2ES-THESIS/Obstacle-Avoidance-RRT
https://github.com/E2ES-THESIS/Object-detection
https://github.com/E2ES-THESIS/Monocular-depth-estimation
https://github.com/E2ES-THESIS/Obstacle-Avoidance
https://github.com/E2ES-THESIS/A-Star-Path-Planning
https://github.com/E2ES-THESIS/Image-Classification
https://github.com/E2ES-THESIS/KLT-Mono-Odometry
https://github.com/E2ES-THESIS/Object-Detection-PKG-ROS
https://github.com/E2ES-THESIS/ORB-BFMatcher
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13. https://github.com/E2ES-THESIS/QuadSim-Python - Codebase for python-based 

quadrotor simulator. Used for testing path planning and trajectory generation 

techniques. 

14. https://github.com/E2ES-THESIS/ImageStitcher - Ortho-Mosaic image stitching 

for images captured from a Drone. Performs invariant transform to merge multiple 

images 

15. https://github.com/E2ES-THESIS/ORB2SLAM_Support_pkg - ROS-based 

support packages for ORB2 SLAM. Contains Launch files and visualization codes 

written in ROSpy 

16. https://github.com/E2ES-THESIS/YOLO-Object-Detection - Yolo model-based 

object detection node using OpenCV and DNN. Supports object detection on the 

real-time video stream. 

17. https://github.com/E2ES-THESIS/TeleopKeyboard - Support ROS package for 

teleop operation using the keyboard. Can be used for both Aerial and Ground 

Robots. 

  

 

  

https://github.com/E2ES-THESIS/QuadSim-Python
https://github.com/E2ES-THESIS/ImageStitcher
https://github.com/E2ES-THESIS/ORB2SLAM_Support_pkg
https://github.com/E2ES-THESIS/YOLO-Object-Detection
https://github.com/E2ES-THESIS/TeleopKeyboard
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APPENDIX B 

Demo experimentation (predominantly simulations) are attached as links in this 

appendix. 

1. https://youtu.be/1wTaUx1P6gE - Implementation of custom RTABMap SLAM 

technique using a mobile robot to test the mapping accuracy of the technique in 

indoor environments. 

2. https://youtu.be/3JyuIRXX_9E - ORB2 SLAM implementation using KITTI 

dataset. 

3. https://youtu.be/l6-3poF67ZA - An implementation of Visual Inertial Navigation 

System (VINS) using EUROC dataset. Used Stereo vision and IMU for efficient 

navigation especially in GPS-prone environments.  

4. https://youtu.be/xQxt33pqoSg - Development of python package to reconstruct 

indoor/outdoor environments with diverse texture contrasts using Oriented FAST 

and Rotated Brief feature detector, FLANN based matches, and RANSAC for 

outlier removal; Optical flow and PnP (DLT and Levenberg) for estimating the 

pose of the robot. 

5. https://youtu.be/ENfY3lAuCVA - ORB stands for Oriented FAST and Rotated 

Brief.  It uses FAST extractors and BRIEF descriptors. It is widely used in several 

SLAM architectures for extraction steps including VI-ORB SLAM, MSCKF, etc. 

6. https://youtu.be/dEREaBp6o-g - Various Frame Processing from a UAV 

perspective is visualized including segmentation, depth estimation, event data 

along with ground truth data.  

7. https://youtu.be/9YORBRRYKHM - Simulation of a quadcopter in a gazebo 

simulator to localize itself in the global environment using the front-facing 

camera. The green dots thus represent the ORB features. It can also be visualized 

using the RVIZ tool as shown. 

8. https://youtu.be/WhJ5JbXbA6w - Using point clouds obtained from the stereo 

cam, 2D histograms are generated from which cost function is derived. Based on 

the weight values in the free space, local waypoints are manifested and obstacle 

avoidance is established. 

9. https://youtu.be/KZcNCHoezC8 - Developed a ROSpy-based control system for a 

quadcopter to transverse to a set of GPS setpoint autonomously. The Control 

https://youtu.be/1wTaUx1P6gE
https://youtu.be/3JyuIRXX_9E
https://youtu.be/l6-3poF67ZA
https://youtu.be/xQxt33pqoSg
https://youtu.be/ENfY3lAuCVA
https://youtu.be/dEREaBp6o-g
https://youtu.be/9YORBRRYKHM
https://youtu.be/WhJ5JbXbA6w
https://youtu.be/KZcNCHoezC8
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System has two modules namely the Altitude controller and the position 

controller, Altitude controller stabilizes the drone at the zero error Roll, Yaw, 

Pitch angles using a PID based controller, the position controller takes in the target 

GPS coordinate has setpoint values and calculates the roll yaw pitch angles to 

successfully move to the setpoint coordinates. these controllers work in 

synchronization to autonomously fly the drone from one coordinate to another. 

10. https://youtu.be/KMF9M_KPoIM - UAV autonomous navigation using the 

learning-free technique, adapting its velocity based on the free space in the UAV's 

field of view. 

11. https://youtu.be/pVTG0oIB4hs - Experimentation was performed on a python-

based Quadrotor simulator. Path planning algorithm was tested on multiple maps 

of configuration space. 

12. https://youtu.be/6eGLCexWC-Y - Autonomous obstacle avoidance using a 

learning-based technique in AIRSIM simulator 

13. https://youtu.be/eGVrUrpGMpc - Monocular depth estimation in real-time using 

unsupervised networks. 

  

https://youtu.be/KMF9M_KPoIM
https://youtu.be/pVTG0oIB4hs
https://youtu.be/6eGLCexWC-Y
https://youtu.be/eGVrUrpGMpc
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APPENDIX C 

 

Basics on UAV systems, application, cons, limitations, open problems 

Types of UAVs 

Multirotor- It gives great control and is generally very economical. They aren’t very 

efficient as a lot of energy is used to fight gravity and hence their flight time is 

comparatively less and reduces further when payload weight increases. 

Fixed-wing- Use wings for getting the lift. It is more efficient as they fight only air 

resistance and not gravity directly. Therefore, their flight duration is also long. But the 

maneuverability of fixed-wing UAVs is less. They cannot vertically take off or land. 

Single rotor- Has one main rotor for lift and one tail rotor to change direction. They 

offer better control and are more efficient because of their long blades. They can take 

off and land vertically and can also hover in mid-air but requires more maintenance 

because of their mechanical complexity. 

Flight Dynamics 

• Thrust- Upward and Downward movement of the UAV. Reducing the velocity of 

all motors will lower the UAV and increasing all motor velocity will increase the 

height of the UAV from the ground.  

• Pitch- Forward and backward movement of the UAV. Increasing the velocity of 

the forward motor will move the UAV backward and vice versa. 

• Roll- Left and right movement of the UAV. By increasing the speed of left motors, 

the UAV will move right and vice versa.  

• Yaw- Rotating the UAV in the left and right direction. By changing the speed of 

alternate motors, the UAV will yaw.  

Applications 

 Aerial videography- Because of their compact size, and stability like in multi-

rotors, they are preferred for aerial videography and live coverage of sports.  

 Shipping- They are also used for shipping and delivery. 

 Geographic mapping- Mapping can be made more accurate and faster. 
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 Disaster management- Because of their small size, they can be easily deployed in 

various locations to get viable data about the situation. 

 Military- Used in the military as they reduce human risks considering it is 

unmanned. 

 Agriculture- With their speed and technologies, they can be used to monitor crop 

health over a wide area/ land. 

 Surveillance- Can be used for surveillance and in law enforcement.  

 Search and rescue- UAVs with their ability to reach almost any terrain can be 

effectively used for search and reduce operations. 

 Delivery- With the rise in e-commerce, UAVs can be used to deliver packages 

much faster and hence reduce traffic on land. 

Common Issues 

 Flight duration- If the battery is not charged properly, the drone might lose control 

at any time. Also, the battery has to be properly maintained for a longer lifespan.  

 GPS Signal- At some places, the signal might be lost hence losing control over the 

UAV. Also, the cycling rate of UAVs is low which can cause issues for agile 

flights. 

 Wrong calibration- If the compass is not calibrated properly, then the UAV might 

fly randomly. 

Research Areas 

 UAV Autonomy- Improvement of flight control. Collision and obstacle avoidance. 

Better path planning. Communication and improved sensors. 

 Mapping- Using the images from drones to map the surrounding. 

 Materials- better materials lead to increased flight duration, control, and life span. 

 Hybrids- Design of hybrid models that incorporate all the pros of fixed-wing 

drones and VTOLs, such as vertical take-off and landing, hover, maneuverability, 

agility, and flight duration. 

Open Problems 

 Improving flight duration in multirotor UAVs. 

 Improve payload handling capacity. 
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 Ability to maintain predictability or continue the task even with a minor fault or 

unexpected disturbances during flight. 

 Improvement of swarm technologies. 

 Increasing the agility in multirotor UAVs. 

Limitations 

 They cannot be deployed during all-weather conditions. Highly dependent on 

wind, speed, and rain. 

 The speed of the UAV can’t exceed a limit, usually around 30mph. 

 Drones can cause injuries to birds and other animals or property upon collision. 

 Drones can easily breach privacy. 
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APPENDIX D 

 

What is SLAM? Why Visual SLAM? What are its applications? 

Simultaneously Localization and Mapping (SLAM) is the process of creating maps 

and localizing a vehicle or robot in a world at the same time. It creates maps from 

unknown areas using mapping and localization techniques. GPS doesn’t work well 

indoors. It's precise to a few meters only in outside environments and has a slow cycle 

rate (thus it's not suitable for nimble flight) as well. This level of precision is 

insufficient for autonomous applications. As a result, SLAM was created to address 

these challenges. The major advantages of SLAM are:  

 SLAM uses many types of sensors like laser and camera.  

 Indoor mapping and location identification are easier with SLAM.  

 SLAM can produce 3D images of the surroundings. 

SLAM is twofold as the name suggests, it needs to construct or update the map of an 

environment while simultaneously keeping track of the object's location. 

 

Figure 40 General architecture of SLAM 

The basic steps involved in any SLAM architecture are mentioned as follows:  

 Landmark Extraction - The algorithm will terminate only when the population of 

the particles converges the features which can be re-observed and distinguished 

from the environment. These are used by the robot to find out where it is (to 

localize itself).  

 Data association - The problem of data association is that of matching observed 

landmarks from different scans with each other.  
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 State estimation - The Extended Kalman Filter is used to estimate the state 

(position) of the robot from odometry data and landmark observations  

 State update. 

 Landmark update. 

Before a robot can answer the question of what the environment looks like given a set 

of observations, it needs to know from which locations these observations have been 

collected. At the same time, it is hard to estimate the current position of a vehicle 

without a map. A good map is needed for localization while an accurate pose estimate 

is needed to build a map. 

Visual SLAM 

Visual SLAM, or vSLAM, is the use of just visual sensors. In vSLAM, the camera's 

position is tracked by matching feature points or using the image's appearance, and 

then a 3D/2D map is constructed based on the requirement. However, because 

matching feature points and updating the map must be performed for all image frames, 

this method has the disadvantage of slow processing performance. As a result, 

vSLAM was improved by parallelizing the tracking and mapping process and 

leveraging keyframes to boost performance. 

LiDAR SLAM 

A LiDAR-based SLAM system maps a room using a laser sensor and an IMU, 

comparable to visual SLAM but with more accuracy. LiDAR uses numerous 

transceivers to illuminate a region and measure its distance from the robot's position. 

To determine position and distance, each transceiver rapidly produces pulsed light and 

detects the reflected pulses. Due to the speed at which light travels, very precise laser 

performance is required to track the exact distance between the robot and each object. 

Because of this necessity for precision, LiDAR is both a quick and accurate method. 
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APPENDIX E 

 

What is path planning? What are its types? 

One of the most basic activities required for robot navigation is path planning. As a 

result, once we've located our robot, we'll need to plan our path based on the 

occupancy grid or perceived surroundings. That is, once we have determined the 

destination position and localized our current pose, we must plan the robot's route to 

the destination. Path planning is the name for this type of planning. It can only be 

done if the global map is known in advance and optimized to the utmost extent 

possible; otherwise, it can be explored simultaneously while navigating. The robot's 

path must be clear of collisions. There are numerous path planning strategies to 

choose from, some predominantly used techniques will be explained here. 

Node-based optimal algorithms 

Dijkstra’s Algorithm 

Finds the shortest path in a graph where the weights of the edges are already known 

via dynamic programming using local path cost. When applying in 3D space, a 3D 

weighted graph must be built first; then it searches the whole graph to find the 

minimum cost path. It has two sets, one containing the vertices included in the shortest 

path tree and the other set with the ones not in the tree. The steps involved in this 

algorithm are: 

 Creating a shortest-path tree set. 

 Assigning a distance value to all vertices. 

 Check the adjacent vertices of the lowest vertex.  

 Pick the vertex with minimum distance. 

 Update the distance value. 

 Pick a vertex, not in the path tree and check its adjacent vertices. 

 Repeat the steps until the path tree does include all vertices given. 

A* Algorithm 

A* algorithm is used to calculate the shortest distance between the source (initial 

state) and the destination (final state). A* algorithm has 3 parameters: 
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 𝑔: the cost of moving from the initial cell to the current cell. It is the sum of all 

the cells that have been visited since leaving the first cell. 

 ℎ: it is the estimated cost of moving from the current cell to the final cell. The 

actual cost cannot be calculated until the final cell is reached. Hence, ℎ is the 

estimated cost. We must make sure that there is never an overestimation of the 

cost.  

 𝑓: it is the sum of g and h.  

Therefore, it can be said that  

𝑓 =  𝑔 +  ℎ 

Thus, this algorithm works in the following way, it will calculate 𝑓 value and find the 

smallest 𝑓 valued cell and move to that particular cell. This process will be continued 

until it reaches the destination, that’s the goal cell. 

D* Algorithm 

D* resembles A* but is dynamic (that is, its cost can change while traversing to reach 

the goal). It will assume that there is no obstacle in a particular grid and once it 

approaches the grid, it will dynamically adjust and add information to the map and if 

necessary, re-plan the entire path from the current coordinates. This process is 

repeated until the robot reaches its destination.  

There are three types of D* algorithm namely original D*, Focused D*, and D* Lite. 

All these types are combinations of different path planning algorithms like A*. D* is 

an incremental search algorithm used for path planning. D* resembles A* but is 

dynamic (its cost can change in the traversing to reach the goal). That is, it will 

assume that there is no obstacle in a particular grid and once it approaches the grid, it 

will dynamically adjust and adds information to the map and if necessary, re-plan the 

entire path from the current coordinates. This process is repeated until the robot 

reaches its destination.  

Theta* Algorithm 

Theta* is an any-angle path planning algorithm that is based on the A* search 

algorithm. They search for a path in the space between two points and take a turn at 
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any angle. The resulting path will be towards the goal with fewer turns. Algorithms 

like the A* will be limited only within the grids and thus will produce indirect and 

jagged paths. It interleaves smoothening with the search. There are many variants of 

the Theta* algorithm. Some of them are: 

 Lazy Theta* 

 Incremental Phi* 

Sampling-based planning methods 

Rapidly-Exploring Random Tree 

The Rapidly-exploring Random Tree (RRT) is quite straightforward. Points are 

randomly generated and connected to the closest available node. Each time a vertex is 

created, a check must be made that the vertex lies outside of an obstacle. Furthermore, 

chaining the vertex to its closest neighbor must also avoid obstacles. The algorithm 

ends when a node is generated within the goal region or hits a limit. 

Probabilistic Road Map 

A new technique to deal with choosing points. Here, points are chosen randomly in 

the C-Space instead of uniform selection, assuming the structure of the free space 

from these random points is obtained. Thus, on every iteration, a new set of points are 

randomly assigned in the C-Space and returns 0 or 1, depending on if there is free 

space or collision. Thus, at every turn when it finds a free space, it will try to forge a 

new configuration and the closest existing sample. The problem with a probabilistic 

road map is that there can be a possibility that the robot might fail to find a path even 

if it exists. Thus, this kind of approach is not considered a complete path planning 

algorithm. 

Bionic path planning algorithms 

Ant Colony Optimization Algorithm 

Ant Colony Optimization (ACO) is an intelligence-optimized algorithm that simulates 

the heuristic mechanism of the shortest route based on pheromone in the process of 

ants foraging for food. ACO uses all paths of the entire ant colony to describe the 

solution space of an optimization problem and obtains the best path through positive 
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feedback based on the pheromone. The idea of ACO is that it directly maps the robot’s 

path optimization problem, which is easy to understand and has very intuitive results. 

Particle Swarm Optimization 

It is optimized by continuously iterating to improve the candidate solution with regard 

to a given measure of quality. It will have some particles, which will be moving in the 

environment/ search space with a particular position and velocity. Each particle will 

be influenced by its local best-known position which is updated as better positions by 

other particles. This will move the swarm toward a better solution ultimately. It is 

metaheuristic as it makes few/ no assumptions about the problem optimized. 

Genetic Algorithm 

A genetic algorithm is a search heuristic that is inspired by Charles Darwin’s theory of 

natural evolution. This algorithm reflects the process of natural selection where the 

fittest individuals are selected for reproduction to produce offspring for the next 

generation. The algorithm will terminate only when the population of the particles 

converges. 
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APPENDIX F 

 

What is Visual Odometry? What are the phases of odometry? 

Visual Odometry (VO) is a very vital part of autonomous navigation used with 

autonomous ground vehicles, aerial vehicles, and underwater or surface vehicles. 

Visual odometry is in layman's terms, determining the position information for 

accurate navigation of the robot using camera image sequences. Usage of encoders 

has slippage issues which in turn will reduce the accuracy of estimation. Thus, VO 

provides computationally cheaper and more accurate odometry results when compared 

to GPS, wheel odometry, sonar localization, or INS.  

Feature Extraction 

Features from Accelerated Segment Test 

FAST stands for Features from Accelerated Segment Test. It is one of the fastest 

feature extraction techniques. It is best for a real-time application point of view with 

efficient computation. The working of FAST is as follows: Corner detection by 

drawing the Bresenham circle around the pixel 𝑝 and labeling each of the circles from 

1 to 16. Then the intensity of 𝑁 random pixels is compared. 

Multiple interest points are cast off using the non-maximum suppression which is 

based on the difference in distance between subsequent keypoints.  

Scale-Invariance Feature Transform 

SIFT stands for Scale-Invariance Feature Transform. Its working is as follows: First 

interest points are scaled and localized followed by blurring using the gaussian blur 

operation.  

𝐿 = 𝐺(𝑥, 𝑦, 𝜎) × (𝐼(𝑥, 𝑦))#(56)  

Comparing the interest points with neighboring octaves is done to determine 

keypoints based on the extrema values obtained. Rejection of edges and flat region 

happens next based on intensity measures.  

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 <  0.03 #(57)  
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𝐻𝑀 = (
𝐷𝑋𝑋
𝐷𝑥𝑦

,
𝐷𝑥𝑦

𝐷𝑦𝑦
) ,
𝑇𝑅(𝐻𝑀)

𝐷𝑒𝑡(𝐻𝑀)
=  
(𝑅 + 1)2

𝑅
#(58)  

Then the orientation of the keypoints obtained is based on the high probable 

distribution of the orientation of every keypoint. Then the descriptors based on 

orientation and scale of the keypoint are assigned.  

Speeded Up Robust Features  

SURF stands for Speeded Up Robust Features. It is a robust and fast technique 

preferred for its fast computation of operators using box filters, thus enabling real-

time applications such as tracking and object recognition. Consists of 2 steps- Feature 

Extraction and Feature Description. Feature extraction uses an integral image, which 

is a way of calculating the average intensity of pixels in a selected box. 

𝐼𝑚𝑎𝑔𝑒 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 =  ∑ ∑𝐼(𝑖, 𝑗)

𝑗=0

𝑖≤𝑥𝑗=𝑦

𝑖=0

#(59)  

Surf uses the Hessian matrix because of its good performance in computation time and 

accuracy. Descriptors are assigned by first assigning a fixed orientation to each 

interest point, and then extracting the feature descriptor. 

KAZE and AKAZE 

The working of KAZE is as follows: Nonlinear scale-space extrema to detect the 

features accurately; Nonlinear diffusion filtering with Additive Operator Splitting 

(AOS) is used instead of gaussian blurring to keep the object boundaries intact.  

𝑐(𝑥, 𝑦, 𝑡) =  𝑔(∇𝐼𝑜(𝑥, 𝑦, 𝑡))#(60)  

Orientation of the feature points is very similar to SIFT, but instead of aligning in a 

histogram, points are used in the vector space. Since the descriptors have to operate at 

a nonlinear scale-space, an altered version of the SURF descriptor is used here.  

AKAZE was built over the KAZE algorithm. It uses an accelerated version of 

nonlinear scale-space called Fast Explicit Diffusion (FED). This change was made 

considering how computationally expensive the AOS process of KAZE was. Also, 
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AKAZE uses a form of local difference binary (LDB) descriptors to increase the 

computation of the extraction process further.  

Binary Robust Invariant Scalable Keypoints 

BRISK stands for Binary Robust Invariant Scalable Keypoints. Similar to ORB, 

BRISK uses pyramidal image representation, wherein stable points are extracted using 

the adaptive corner detection operator. Unlike other algorithms, BRISK uses binary 

bitstring.  

Feature Matching  

 
Figure 41 Matching using BF Matcher 

Brute Force Matcher 

It takes the descriptor of every feature of the first set and matches it with all the other 

features from the second set using distance calculation. It is time-consuming and 

matches all features. Also, Lowes’s test is done after matching in general to remove 

outliers.  

Fast Library for Approximate Nearest Neighbor   

Fast Library for Approximate Nearest Neighbor or FLANN has a collection of 

optimized algorithms for searching the nearest neighbors in big datasets. It is faster 

and more accurate than BF Matcher. It has two dictionaries index and search 

parameters.  
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Outlier Removal 

Random Sample Consensus 

RANSAC stands for Random Sample Consensus. Deals with removing outliers from 

inliers contained in a data. No real-world sensor readings are perfect.  Thus, we use 

RANSAC which is a simple trial and error method with groups the inliers and outliers 

separately. Thus, it helps us to throw away the outliers and work with inliers alone 

which will save our computation and time. It involves 4-step processing, and they are 

sampling, scoring, computing, and repeating. 

 
(a) (b) (c) 

Figure 42 RANSAC Procedure 

Let’s assume there are 2D points (Figure 42 (a)) in which a line has to be fitted. Now 

we will sample and randomly take one line marked in Figure 42 (b) as our inlier. Now 

we will compute the number of supporting inliers satisfying the line we drew. This 

will be done by parallelly extending imaginary lines on both sides of the line assumed 

to be the inlier with a uniform distance of δ. Now every point lying inside these 

imaginary lines constitutes the scoring of the inliers. Now in Figure 42 (b) there are 4 

inliers.   

Now we will repeat the steps mentioned above repeatedly and the score will 

be overwritten with the best score after every iteration. In Figure 42 (c), that’s 

after some iterations, we got a line that has 12 points satisfying that line model 

which is the best score to be obtained. Thus, it will be the best fit for the line. This 

way we can eliminate all the outliers easily. 
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Feature Tracking 

 
Figure 43 KLT Tracking 

The apparent motion of pixels in a frame can be tracked using the Lucas-Kanade 

Optical Flow algorithm, which is a method for detection for feature tracking. It 

assumes that neighboring local pixels have small (can be considered constant) flow 

and solves the general optical flow equation using least square criteria (an error has a 

gaussian distribution of zero error). The image flow should always as follow: 

𝐼𝑥 (𝑞1)𝑉𝑥 + 𝐼𝑦 (𝑞1)𝑉𝑦 = −𝐼𝑡 (𝑞1)#(61)  

Rotation and Translation 

Using Mono Vision 

For mono, we will first estimate the estimation matrix derived from the Fundamental 

matrix. Then we will use the recover pose to find the rotation and translational 

vectors. The fundamental matrix and Estimation matrix are used for determining the 

visual odometry along which RANSAC is used to estimate with minimal reprojection 

error.  
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Using Stereo Vision  

 
Figure 44 Camera Projection 

In stereo, we will use a variant of PnP (that’s Perceptive-n-Points). Some PnP variants 

include EPnP, MLPnP, and frame-PnP.  

Some of the assumptions taken will estimate the pose of the robot using stereo vision 

are: Camera parameters are known.  Image co-ordinate is known.  

𝑆 𝑥 𝑝𝑐 = 𝐾 𝑥 [𝑅 | 𝑇] 𝑥 𝑝𝑤 #(62)  

𝑠[𝑢 𝑣 1] = [𝑓𝑥 𝛾 𝑢𝑜 𝑓𝑦 𝑣𝑜 𝑢𝑜][𝑟11 𝑟12 𝑟13 𝑡1 𝑟21 𝑟22 𝑟23 𝑡2 𝑟31 𝑟32 𝑟33 𝑡3]#(63)  

The basic framework of PnP is as follows:  

 Direct Linear Transform (DLT) finds the approximate value of Rv and Tv using 

the projection matrix.  

 Levenberg-Marquardt Algorithm is a trial-and-error optimization step used to 

reduce the reprojection error thereby optimizing the estimated Rv and Tv values. 
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APPENDIX G 

 

Proportional-Integral-Derivative (PID) Controller 

Error is the difference between Process Variable (PV) and Set Point (SP).  

𝐸𝑟𝑟𝑜𝑟 (𝐸) =  𝑃𝑉 –  𝑆𝑃 #(64)  

𝑃 =  𝐸 #(65)  

𝐼 =  𝐼 +  𝐸#(66)  

𝐷 =  𝑃𝑟𝑒𝑣𝑒𝑟𝑟𝑜𝑟–  𝐸 #(67)  

𝑃𝑊𝑀 =  𝑘𝑝 𝑥 𝑃 + 𝑘𝑖 𝑥 𝐼 +  𝑘𝑑  𝑥 𝐷 #(68)  

𝑘𝑝, 𝑘𝑖, 𝑘𝑑 are the gain factors which will be tuned using various methods or trial and 

error methods. There is also a plotting tool exclusively called PlotJuggler which helps 

in plotting and tuning the gains in real-time using Gazebo.  

Equations (64) to (68) indicate the basic equations for finding the PWM for the 

motors. 𝑃𝑉 means the current position resulting due to disturbances and SP is the 

desired position. Once the motor speeds are found, we will have to check the 

boundary conditions, that is t has to be greater than 0 and less than 2𝑥 depending on 

the bytes. So, after these conditions are taken into account, we can send the motor 

speeds from the controller to the ESC to the motors.  

When a disturbance is made, the UAV before retaining its previous control command, 

the thrust will drift the UAV by a little every time it alters. Thus, we will be 

introducing a position controller here to solve this issue. Here instead of assuming the 

initial position angle references, we will use the position controllers to that for us and 

send it as the output to the PID loop of roll pitch and yaw mentioned earlier. We will 

be using the four sensors discussed in the first sheet for the position controller.  

PID tuning is done here as follows:  

• First, we will tune the outer loops also termed the cascade loops. For tuning, we 

will take all the gain terms to have a constant 0 assigned by default.  

• Then, we will slowly give a range of values, so let’s take the 𝑃 controller of Yaw.  
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• So, we can tune the 𝑃 terms gain and then add 𝐷 and 𝐼 to stabilize it properly for 

Yaw in the cascade loop control.  

• Then, we can move to the Pitch and Roll in order and assign the values using trial 

and error.  

• Then, once all the four PID controllers in the cascade loop are tuned, we can 

proceed with the controllers in the position controller following the same rules as 

mentioned in the above point.  

In MATLAB, we can first draft the plant (the PID controller block in our case) and 

give values to the gain terms. We can then go to the PID tuning graph and adjust the 

response time and check if the desired kind of graph is plotted. Once done, check the 

proposed gain values at the bottom of the tuning tool and put its value in the plant 

done earlier. Now, check it in real-time and adjust accordingly.  

 

 


