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Abstract

In the fast-paced world of baseball, maximizing pitcher performance while minimizing
runs relies on understanding subtle variations in mechanics. Traditional analysis methods,
reliant on pre-recorded offline numerical data, struggle in the dynamic flow of live games.
Although seemingly ideal, broadcast video analysis faces significant challenges due to mo-
tion blur, occlusion, and low resolution. This research proposes a novel 3D human modeling
technique and a pitch statistics identification system that are robust to the aforementioned
challenges.

Specifically, we propose a technique called Distribution and Depth-Aware Human Mesh
Recovery (D2A-HMR), a depth and distribution-aware 3D human mesh recovery technique
that extracts pseudo-depth from each frame and utilizes a transformer network with self-
and cross-attention to create a 3D mesh that extracts the 3D pose coordinates. The
network is regularized using various loss functions including a silhouette loss function, joint
reprojection loss functions, and a distribution loss function which utilize normalizing flow
to learn the deviation between the underlying predicted and ground truth distributions.
Furthermore, we propose a focused augmentation strategy specifically designed to address
the motion blur issue caused by fast-moving motion.

Following that, we introduce the PitcherNet system, which is built upon the D2A-HMR
and motion blur augmentation strategy. PitcherNet proposes an automated analysis system
that analyzes pitcher kinematics directly from live broadcast video, providing valuable
pitch statistics (pitch velocity, release point, pitch position, release extension, and pitch
handedness). The system relies solely on the broadcast videos as its input and leverages
computer vision and pattern recognition to generate reliable pitch statistics from the game.
First, PitcherNet isolates the pitcher and batter in each frame using a role classification
network. Next, PitcherNet extracts the kinematic information representing the pitcher’s
joints and surface using a refined version of D2A-HMR model.

Additionally, we enhance the generalizability of the 3D human model by incorporating
additional in-the-wild high-resolution videos from the Internet. Finally, PitcherNet em-
ploys Temporal Convolutional Network (TCN) and kinematic-driven heuristics to capture
the pitch statistics, which can be used to analyze baseball pitchers.
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Chapter 1

Introduction

In recent years, the advent of deep learning has revolutionized various fields, enabling
remarkable performance improvements. This phenomenon has now extended its influence
into the realm of sports analytics, particularly in major team sports such as baseball
[114, 17, 46], ice hockey [38, 125, 124], basketball [23, 116, 83] and soccer [42, 7, 43]
which enjoy extensive global viewership and participation. Teams across these sports are
increasingly turning to vision-driven analytics to gain a competitive edge by evaluating
player performance and making informed assessments.

Sabermetrics, pioneered by the Society of American Baseball Research (SABR) [39],
the empirical analytics approach to in-game baseball analysis, has seen remarkable growth
in recent times [65]. Although most of Sabermetrics work focuses on structured statistical
data [114, 46] such as utilizing offline data like pitch type, break, spin rate, and historical
win rate; video analysis offers the potential for visual understanding, detailed performance
evaluation, and contextual information from real-time data. Baseball, often regarded as
a sport with extensive statistical analysis, provides valuable insights into various aspects
of the game and player skills [57, 56]. Being a pitcher-friendly game, the performance
of the pitcher significantly influences the team’s success and overall gameplay. Analyzing
pitchers in baseball is of utmost importance, as it can significantly enhance the assessment
of pitching techniques, accurately evaluate pitch movements, and aid in detecting subtle
patterns, such as changes in delivery or pitch tipping. This comprehensive analysis not only
provides valuable information about individual pitchers, but also significantly contributes
to improving the overall performance of the team.
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1.1 Problem Description

Analyzing a pitcher’s mechanics in real-time from live broadcasts presents several technical
challenges. Unlike the controlled environments used in traditional motion capture [89, 98,
110], broadcast videos introduce inherent difficulties due to the dynamic nature of the
game.

Motion blur presents a significant challenge [17, 103, 120]. During the pitching motion,
a pitcher’s arm moves extremely fast, often exceeding 100 mph. At typical frame rates
like 30fps, this rapid movement can result in blurry frames. This blurring is particularly
problematic for fast pitches. Unfortunately, blurry frames make it difficult for traditional
computer vision algorithms to pinpoint the exact location of the pitcher’s joints. This
limitation hinders the ability to track joint movement and accurately reconstruct a 3D
representation of the pitcher’s pose.

Another challenge is occlusion [95, 26, 121]. This occurs when other players on the field,
objects like bats or balls, or even the camera angle itself, block the view of the pitcher’s
body. These blockages, also known as self-occlusions, can lead to missing data about the
pitcher’s pose. This incomplete data can then negatively impact the accuracy of both the
3D human modeling process and the subsequent extraction of pitch mechanics data.

The lower resolution of broadcast videos creates another challenge [5, 93, 123]. Com-
pared to high-quality recordings used in controlled environments, broadcast videos often
have fewer pixels. For instance, a typical broadcast might be in 720p (1280x720 pixels),
whereas a high-quality recording used for analysis might be in 4K (3840x2160 pixels). This
reduction in detail can make it challenging to distinguish subtle changes in the pitcher’s
body position such as the angle of the elbow during wrist cocking. These subtle changes
might be crucial for accurately analyzing the mechanics of a pitch.

These technical limitations associated with live broadcast video hinder the ability of
existing analysis methods to capture the dynamic nature of a pitcher’s mechanics in real-
time. Thus, the thesis is driven to address the above-mentioned challenges enabling robust
3D human modeling and subsequently reliable pitch analysis for baseball sport.

1.2 Motivation

Baseball is a game of precision and power, where the mechanics of a pitcher significantly
impact their performance and injury risk. However, current analysis methods [13, 47, 114,
131, 89, 98, 110] fail to capture the dynamic nature of live games. Traditional analysis

2



methods [13, 47, 114, 131] using prerecorded data lack real-time capabilities crucial for
in-game adjustments. Although broadcast video analysis seems ideal, technical limitations
highlighted in the previous section hinder accurate data extraction.

This gap between the aforementioned existing methods and the need for real-time
analysis during live games motivates the development solutions to solve these issues. The
proposed solutions [17, 16, 15] in this thesis aim to bridge this gap by leveraging computer
vision and pattern recognition directly from live broadcasts. These innovations have the
potential to:

1. Automate Scouting and Evaluation [121]: Extracted kinematic data can be
integrated into player scouting reports, offering a more objective and data-driven
evaluation of pitching talent.

2. Deeper Fan Engagement [37]: Automated real-time pitch statistics can enrich
broadcasts for viewers using just a single smart phone, improving the viewing expe-
rience and offering new insights for fans.

3. Inform Coaching Decisions [121]: Coaches gain valuable kinematic insights for
strategic adjustments and introduce tailored training programs to address specific
mechanical deficiencies of the pitchers.

4. Reduce Injury Risk [143]: By analyzing subtle changes in mechanics that could
indicate potential overuse or stress, injuries can be predicted and prevented.

5. Automate Umpire Assistance [121]: Extracting the pitch statistics from live
video can potentially help umpires make close calls on balls and strikes.

1.3 Major Contributions

The thesis dissertation presents unique contributions that prove the efficacy of 3D human
modeling in baseball sports analytics. The primary contributions of the dissertation include
the following.

1. We introduce PitcherNet, a novel automated system [15], which enables accurate
prediction of baseball pitch statistics from low-quality broadcast videos.
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2. We introduce a novel image-based HMR model named D2A-HMR [16] that adeptly
models the underlying distributions and integrates pseudo-depth priors for efficient
and accurate mesh recovery.

3. Taking advantage of the residual log-likelihood approach [70], we refine the 3D
human model by learning the disparity between the predicted underlying distribution
and the ground truth [16].

4. We propose a focused augmentation strategy [17] that incorporates motion blur
artifacts, challenging the conventional belief in complex pipelines and showing sig-
nificant improvements in handling these challenges.

5. We propose an innovative pitcher identification strategy [15] which aims at
player role classification by decoupling actions from player kinematics.

The secondary contributions of the dissertation include:

1. We propose a new domain-guided masking strategy [6], termed d-MAE, specifically
tailored to player identification, enhancing model robustness to motion blur.

2. We introduce a pipeline that incorporates in-the-wild data from the Internet [17],
capturing the variability and complexity present in the data, resulting in an efficient
and versatile pose estimation.

3. We propose a keyframe identification module [5] that is robust to blur and
occlusions using Region of Interest (RoI) and Spatial Context-Aware filtering to
facilitate effective jersey number recognition.

1.4 Thesis Outline

The thesis is structured to address challenges in kinematic-driven pitch analysis for baseball
videos due to agile actions and limitations in datasets. Chapter 2 provides background
on different human datasets, evaluation metrics, 3D human modeling, and existing pose
estimation and action recognition approaches. Chapter 3 details the baseball video dataset
and its preprocessing. Chapters 5 and 4 discuss the proposed algorithms for 3D pose
modeling during agile actions and how they address motion blur. Chapter 6 explains how
the generated 3D models are used to derive kinematically-driven pitch statistics. Finally,
Chapter 7 concludes the thesis by summarizing the findings, contributions, impact, and
potential applications of the research.
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Chapter 2

Background

This chapter lays the groundwork for the following chapters by introducing relevant datasets,
evaluation metrics, and key concepts. We begin with an overview of 3D human datasets,
focusing on those used to train and validate the models developed in this thesis. Next,
we explore the different evaluation metrics employed for quantitative assessment. This is
followed by a comprehensive overview of 3D human modeling and human pose estimation
techniques. Finally, we delve into the literature on player action recognition techniques
specifically designed for sports applications.

2.1 Datasets

In this thesis, we primarily focussed on one in-house dataset (MLBPitchDB) and two
publically released datasets containing annotations for human joint positions. Each of
these datasets are explained in more detail in the following sections.

MLBPitchDB. The MLBPitchDB dataset [17] is specifically built for effective baseball
sports analysis. It offers comprehensive data encompassing player details, 3D pose estima-
tions, player actions, and detailed play statistics for all players within the camera’s view.
These statistics include pitch extension, velocity, release point, and various spin character-
istics. To ensure data quality, the dataset undergoes preprocessing techniques outlined in
[17], including player detection, data synchronization, and camera re-projection. Further
details on the dataset and preprocessing methods can be found in Chapter 3.
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Human3.6M. Human3.6M dataset [49] is the largest publicly available collection for 3D
human pose estimation tasks. This dataset features 3.6 million images showcasing 7 profes-
sional actors engaged in 15 common activities, including walking, eating, and conversation.
It provides both 2D and 3D ground truth poses for each image, along with camera calibra-
tion parameters and individual body measurements for the actors. Following established
practice within the field [76, 55], our training process utilized data from subjects S1, S5,
S6, S7, and S8, while evaluations were conducted on subjects S9 and S11.

3DPW. The 3D Poses in the Wild (3DPW) [127] dataset offers a unique resource for
evaluating 3D human pose estimation in natural environments. Unlike prior datasets
captured in controlled settings, 3DPW leverages videos recorded with a moving phone
camera, showcasing real-world scenarios. It comprises 60 video sequences featuring diverse
human actions. Each sequence is richly annotated with 2D and 3D pose information for
every frame, along with camera data and 3D body scans of the individuals involved. For
training and testing purposes, the dataset adheres to the standard split of 22,000 and
35,000 images, respectively.

2.2 Evaluation Metrics

We employ several metrics to assess the performance of different components of our system.
For the 3D human pose estimation task, we utilize two primary metrics: the mean Per
Joint Position Error (mPJPE) and the Procrustes-Aligned mean Per Joint Position Error
(PA-mPJPE). These metrics quantify the average distance between the predicted and
ground truth 3D joint locations, with PA-mPJPE accounting for global pose variations.
For player tracking and identification, we evaluate the system’s accuracy performance.

In line with established practices from previous research [60, 76, 31], we subjected our
3D human model to a comprehensive evaluation using key metrics: mPJPE, PA-mPJPE
and mean Per Vertex Error (mPVE) in both the 3DPW and Human3.6M datasets. mPVE
metric is ignored if the ground truth mesh is not available. All metrics were measured
in millimeters (mm), providing a precise assessment of our model’s performance. Finally,
pitch statistics performance is assessed using standard metrics such as F1-score, precision,
or accuracy with different classification margins.
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2.3 3D Human Modeling

Human Mesh Recovery (HMR) is an approach to estimate the pose and shape of a human
subject, featuring a broad spectrum of applications across various downstream tasks [133,
102, 138]. The modeling of the human mesh can significantly improve player performance
in the realm of sports. For example, the representation of the player using HMR enables
precise biomechanical analysis where the understanding of joint movements, muscle actions,
and overall body kinematics can be analyzed. Similarly, potential stress points on the body
during actions can be analyzed to prevent injuries. Additionally, data-driven coaching and
simultaneous unbiased quantitative performance evaluations of players can be performed
to analyze the overall impact of players in the game.

Early attempts to reconstruct the surface of the human body were made by [106, 4,
113, 63], but the introduction of the Skinned Multi-Person Linear (SMPL) [84] revolution-
ized surface modeling by providing a highly realistic representation capable of capturing
deformations. SMPL is detailed extensively in Section 2.3.1 and the types and advances
in HMR is detailed in Section 2.3.2.

2.3.1 SMPL

In sports analysis, particularly for complex movements like pitching, traditional models re-
lying solely on joint positions can miss crucial details. Including body surface data unlocks
a new level of understanding. It captures complex deformations of soft tissues, significantly
affecting joint motion and power transfer during throws. This enhanced accuracy allows
for a more precise analysis of contact interactions between the pitcher and the ball or the
ground. Furthermore, by analyzing surface deformations, sports scientists can gain valu-
able insight into muscle activation patterns and identify potential performance limitations.
This detailed information can be used to compare pitching styles and identify factors that
differentiate elite athletes. Beyond core analysis, body surface data paves the way for
innovative applications in sports analysis. It forms the foundation for creating realistic
visualizations of movements, aiding coaches in developing training strategies. In addition,
these data can be used in interactive training tools such as virtual reality or biofeedback
systems, providing athletes with real-time feedback to optimize their technique. Thus,
incorporating body surface data in sports analysis goes beyond traditional approaches, of-
fering a deeper understanding of complex movements, valuable performance insights, and
the potential to develop innovative training tools.

Throughout this thesis, we will use a surface model called SMPL [84] which is a statis-
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tical model with the objective of efficiently mapping human subjects with two parameters:
shape and pose parameters. The shape parameters β correspond to the 10 shape coeffi-
cients of the PCA shape space, where each dimension interprets a different aspect such as
height (tall/short) or expansion/shrink in a particular direction or weight of the human
subject. The pose parameters θ corresponds to the 23× 3 relative 3D joint rotation of 24
joint positions from a parent joint in the human body and ϕ corresponds to the statistical
prior of the human body. The SMPL model M(θ, β) ∈ R3×6980 represents the output of
the triangulated mesh obtained from the shaping of the template mesh conditioned on θ
and β.

The process of synthesizing humans from the SMPL model using a template mesh
can be categorized into shape blend shapes, pose blend shapes, and skinning. This is
qualitatively demonstrated in Figure 2.1.

Figure 2.1: Overview of the SMPL process [84].

Shape Blend Shapes. The vertex displacements are added to the template mesh (T )
in this step to represent how far the subject shape is from the template shape.

Pose Blend Shapes. The relative rotation of the joints causes deformation on the
vertices surrounding the corresponding joints. Thus, the vertex displacements are added
which represent the deformation as a result of a specific pose.

Skinning. A weighted combination of the joint deformation is used to transform each
vertex of the template mesh to align with the expected pose.

2.3.2 Types of HMR

HMR can be split into two types: parametric and non-parametric approaches. The para-
metric approach involves the modeling of a network to regress the parameters of a para-
metric body model from the input image, which are subsequently utilized for human mesh
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generation, as elucidated in [44, 28]. These methods typically employ Convolutional Neural
Networks (CNN) to extract image features and then predict the model parameters from
the features. Parametric modeling approaches can further be split into optimization-based
and learning-based approaches. Optimization-based approaches fit a body model by min-
imizing the error between different prior terms. SMPLify [14] fits the parametric SMPL
[84] model to minimize the error between the recovered mesh and keypoints. In addition,
prior terms including silhouettes [28, 133] or distance functions [144] are used to penalize
unrealistic shapes and poses. Learning-based approaches take advantage of deep neural
networks to predict model parameters [62, 28, 27]. Recent works including HMR-ViT [27]
use a transformer-only temporal architecture to predict the model parameters, and Im-
pHMR [28] uses neural feature fields to model humans in 3D space from a single image.
However, the use of pose parameters as a regression target can introduce inaccuracies and
non-minimal representations, leading to performance limitations [63].

Thus, recent works have been witnessed in non-parametric approaches [31, 76, 63],
which directly regresses the 3D coordinates of the human mesh without relying on a prede-
fined parametric model. Non-parametric modeling approaches including GraphCMR [63],
Pixel2mesh [128], and Feastnet [126] use graphical neural networks to regress vertices from
RGB images, as they are effective in modeling neighborhood vertex-vertex interactions.
Pose2Mesh [31] uses a 2D and 3D pose to regress the vertices using spectral graphical
neural networks. METRO [76] uses transformers to model the global interaction between
vertices, and I2LMeshNet [92] uses a heatmap-based representation called lixel to regress
the human mesh.

2.4 Pose Estimation

Human pose estimation is one of the fundamental problems in computer vision. Estimating
the pose or the joint positions of the humans with a single camera is a very challenging
task. It has numerous applications in sports, action recognition, computer-assisted living,
human-computer interfaces, special effects, and telepresence [80, 111, 80, 137, 32, 19].

Pose estimation can be divided into 2D and 3D pose estimation approaches and can
further be subcategorized based on the idea behind the approach. In this section, different
types of pose estimation are detailed on the basis of their taxonomy.

Determining the 2D pose of the person, that is, the joint positions (x and y coordinates)
of an image is termed the 2D pose estimation. Estimation of the human 2D pose can be
done in two ways: top-down [134, 117, 90, 99, 72, 96, 129] and bottom-up approaches
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[68, 86, 25]. The top-down approach prioritizes and isolates the person and then leverages
a model to predict the joint positions. Whereas, bottom-up approach directly scans the
image for all the plausible keypoints and then connects the keypoints to form a complete
human pose.

Several techniques have been proposed for 2D pose estimation, which can be broadly
categorized into heatmap-based and regression-based approaches. Heatmap-based methods
[134, 72, 117] focus on predicting heatmaps that represent the likelihood that each keypoint
is present at different locations in the image. These heatmaps are then processed to
estimate the exact keypoint locations. On the other hand, regression-based methods [99, 90]
directly regress the coordinates of keypoints from the input image by employing deep neural
networks to learn the mapping between the image and the keypoints. These approaches
have demonstrated impressive performance in capturing fine-grained details and handling
occlusions, making them suitable for challenging pose estimation tasks.

Determining the 3D pose of the person, that’s the joint positions (x, y, and z coor-
dinates) from an image is termed 3D pose estimation [74, 67, 82, 122, 73, 20]. There
are various ways in which the 3D Pose Estimation problem can be approached and some
approaches include lifting 2D to 3D, training 3D alongside 2D pose, training 3d directly
from images, etc. Recently, transformer-based networks have emerged as State-Of-The-
Art (SOTA) models. Epipolar Transformers [45] utilizes epipolar constraints to enforce
geometric consistency between 2D keypoints. TransFuse [87] incorporates a cross-modal
transformer to fuse information from multiple views. MHFormer [74] introduces multihead
self-attention mechanisms to capture both local and global dependencies.

2.5 Player Action Recognition

Deep learning has emerged as a powerful tool for action recognition, offering promising
results. The use of 3D convolutions has demonstrated effectiveness in capturing crucial
spatio-temporal information from video data [66, 32, 136, 19]. However, these methods
often suffer from a large number of parameters, making them susceptible to overfitting in
smaller datasets. To address this limitation, Li et al. [66] introduced a spatio-temporal
attention network, enabling identification of the key video frames and spatially focus on
those frames. Similarly, works including [19, 32, 136, 137] leveraged the pose features from
each frame of the sequence and enable effective action recognition without introducing
parameter overhead.

Yao et al. [137] coupled pose and action by formulating pose as an optimization on a set
of action-specific manifolds. Cai et al. [19] use a two-stage architecture that extracts pose

10



information and temporal information using optical flow technique before combining them.
STAR-Transformer [2] fused video and skeletal data using a transformer architecture with a
special cross-attention mechanism. SVFormer [132] introduced a semi-supervised learning
approach by incorporating a novel data augmentation technique called Tube TokenMix,
specifically designed to improve video understanding.

2.6 Summary

This chapter establishes the foundation for 3D human modeling and analysis by intro-
ducing critical concepts like pose estimation and action recognition. The chapter reviews
commonly used datasets and evaluation metrics for human pose estimation. It then delves
into the details of human modeling with SMPL models, exploring the parametric and non-
parametric variations. Finally, the chapter surveys recent advancements in 2D and 3D
pose estimation methods, along with their underlying paradigms. Subsequent chapters
will expand upon these datasets and propose novel methods to address inherent visual
challenges within them, with the ultimate goal of achieving robust and reliable 3D human
modeling and analysis.
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Chapter 3

MLBPitchDB Dataset

This chapter introduces the MLBPitchDB dataset, a collection of baseball pitching data
specifically designed to evaluate a network’s ability to generalize to unseen data. The
dataset contains information from over 1,000 games, encompassing more than 100,000
pitches. It includes data points often missing in standard datasets, such as those featuring
unusual poses and extreme motion blur. This makes the MLBPitchDB dataset a valuable
tool for researchers developing pose estimation and action recognition algorithms.

Each data point within MLBPitchDB captures 18 3D joint positions of the pitcher as
shown in Figure 3.1, along with detailed pitch statistics. These statistics include pitching
velocity, extension, pitch type, horizontal/vertical break, spin rate, set position, release
velocity, and other observed pitch metrics. Additionally, the dataset provides the 3D joint
positions of both the batter and the catcher, facilitating a more comprehensive analysis of
game dynamics.
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Figure 3.1: Ground truth format for the 3D joint positions (R/L: right/left).

3.1 Dataset Description

We have used only 150 pitch sequences, which correspond to 30,000 frames in total, to
strike a balance between having enough data to train a reliable model and avoiding the
risk of overfitting by focusing on a smaller, but more diverse, and representative dataset.
The dataset has been divided into three subsets: training, validation, and testing with the
respective split provided in Table 3.1.

Table 3.1: Dataset split for Training, Validation, and Testing

Dataset Pitch Sequences Frames

Train 105 21,050
Validation 15 2,962

Test 30 5,988

The size and composition of the dataset were carefully chosen after considering the
diversity and coverage of pitching actions, including the pitcher handedness, set position,
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pitch type, and game lighting conditions. Experimentation was conducted exclusively on
the test set that contains real-world input frames with inherent motion blur effects.

Some problems with the dataset include extra frames before/after the pitching action
for which the pitcher’s pose is not annotated and the absence of the camera parameters.
Camera parameters are required to reproject and estimate the ground truth 2D pose of the
pitcher in camera coordinates from the annotated ground truth 3D pose data captured in
the world coordinate frame. This introduces some additional constraints to estimate the
exact mapping parameters between the 3D world coordinates and 2D camera coordinates
which is required to train the 2D pose estimator. Consequently, certain assumptions and
approximations were made to work around the limitations in this dataset to ensure its va-
lidity, and those components can be visualized in Figure 3.2. The proposed data processing
module to circumvent the aforementioned challenges is detailed in the following section.
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3.2 Dataset Processing

Figure 3.2: Overview of the data processing framework.

The data processing module addresses three primary objectives. The first objective tackles
the task of improved player identification, specifically focusing on the pitcher. Accurate
detection and isolation of the pitcher in each frame is crucial for accurate analysis. This
is achieved through a player detection technique, which will be further detailed in Sec-
tion 3.2.1. Additionally, image enhancement techniques, explained in Section 3.2.2, are
employed to improve the pitcher’s visibility within the frames. This combined approach
ensures the data focuses on the player of interest and provides clear visual information for
analysis.

Data consistency is the second objective addressed by the processing module. Missing
annotations and 3D groundtruth pose misalignment issues with the broadcast frames hin-
ders analysis. A time series technique, explained in Section 3.2.3, is employed to address
these inconsistencies and ensure the data aligns seamlessly for further processing.
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The final objective deals with the absence of camera parameters within the raw data.
Camera parameters are critical for obtaining ground truth 2D pose information, which
is essential for many machine learning tasks. A dedicated step, further detailed in Sec-
tion 3.2.4, is implemented within the processing module to address this challenge.

By addressing these three objectives, the data processing module transforms the raw
MLBPitchDB data into a high-quality and reliable dataset. This prepared dataset is
then suitable for further analysis and machine learning tasks aimed at understanding and
evaluating baseball pitching mechanics.

3.2.1 Pitcher Identification

Accurate tracking and identification of players are fundamental for effective action recog-
nition and analysis in sports scenarios. As highlighted in the literature, the challenges
associated with simultaneous tracking and classification based on features are the compro-
mise in the reliability of obtaining the desired tracklet. Thus, our objective is to decouple
the action from kinematics obtained from sequences of the tracklets to acquire the desired
tracklet ID for subsequent downstream tasks.

Initially, tracklets are generated using the methodology proposed in SORT [9], which
utilize YOLOX [41] detections. Each tracklet is assigned a unique identifier along with the
3D pseudo-pose of MHFormer [74]. Subsequently, we decouple player actions by classifying
each tracklet into the player’s role (pitcher, batter, or others). Given that pitchers are the
primary focus of our investigation, we identify sequences within tracklets where pitching
actions occur. To accomplish this, we employ a TCN architecture designed to decouple
various actions within each tracklet, specifically isolating the pitching action of interest.
The TCN architecture, described in Figure 3.3, eliminates the dependence on the charac-
teristics of specific players for classification, providing a more robust solution to identify
the target player in dynamic sports scenarios.

The TCN architecture utilizes a series of five TConv layers which encompass a di-
lated 1D convolutional layer with progressively increasing dilation rates, followed by batch
normalization and ReLU activation in each layer. The network ingests a 4D tensor rep-
resenting pose sequences P = {Pi : P ∈ RK×C}Ni=0, where each dimension corresponds to
batch size (B), temporal sequence length (N), number of joint positions (K), and 3D player
coordinates (C). This progressive dilation allows the TCN to capture long-range temporal
dependencies crucial for understanding complex motion patterns, while dropout layers and
batch normalization enhance the model’s generalizability. In addition, skip connections
are utilized, allowing the model to directly access information from the original input at a
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P1

P2

p ∈ R4

(Cin, Cprev, k) (Cout, Cin, k)

(a) TCN

(b) TConv

Figure 3.3: Temporal Convolutional Network. (a) Overview of the proposed TCN for
the player identification task, where fc denotes fully connected layers and p refers to the
model’s output. (b) Architecture of the TConv block used in the TCN, where Cin, Cout

and Cprev denotes the input, output and previous channels, respectively and k denotes the
kernel size.
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deeper stage in the network. This helps to address the problem of vanishing gradients and
improve the flow of information throughout the TCN architecture.

Figure 3.4: Visualization of player identification module
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Figure 3.4 illustrates some qualitative results achieved leveraging the proposed ap-
proach. The figure showcases frames that are augmented using the aforementioned augmen-
tation techniques with the bounding box overlayed around the detected players generated
from the YOLOX model. The color of each bounding box corresponds to the classification
label assigned by the TCN model. In this color scheme, ”red” indicates players, while
”pink” specifically identifies pitchers.

3.2.2 Colorspace Conversion

The cropped frames with pitcher were then converted into the LAB colorspace which
consists of two color channels and a luminosity channel. Then, contrast enhancement on
the luminosity channel was done to increase the overall brightness level and amplify the
adjacent pixel intensities. Then it was converted to BGR colorspace to improve the visual
quality of the images while still preserving color information.

3.2.3 Data Synchronization

To synchronize between frames and the 3D ground truth pose data, Dynamic TimeWarping
(DTW) [108] was employed as a method of aligning the two sequences. By warping the
time axis and minimizing the distance or cost between the sequences, DTW finds the ideal
alignment. Directly aligning an image with 3D keypoints is impractical; thus, a two-step
approach was adopted. Firstly, an off-the-shelf 3D pose estimator was used to estimate
the pose at each frame. Subsequently, DTW was used to find the best alignment between
the GT 3D pose sequence and the estimated poses. Given the data and the constraints of
the problem, a one-to-one relation was established as a hard constraint thereby enforcing
unique correspondences between poses. Equation (3.1) in the following represents the cost
function (G) that was constructed as part of the alignment process and takes into account
both the spatial and temporal components of the data.
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Here, kpgt and kppred are the ground truth keypoints and estimated keypoints respec-
tively, and gs and gt correspond to the spatial and temporal weight gains, respectively. G
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is formulated to simultaneously account for spatial and temporal aspects of the pose data,
providing a more accurate approach to align the data. The mean square error was used
to capture the spatial discrepancy between keypoints and cosine similarity was utilized
to measure the difference in angle between subsequent frames to calculate the temporal
context of the pose data. The estimated spatial and temporal distances are then added
and represented as bins of a histogram to then compare with other pose representations.

3.2.4 Camera Projection

To address the absence of camera parameters for mapping 3D world pose coordinates to 2D
camera pose coordinates, we utilize an iterative optimization approach to find the optimized
camera parameters. We begin by manually annotating the 2D pose in a reference frame
(image plane coordinates) and initializing a focal length. Through a process of gradient
descent optimization, we iteratively refine the mapping by adjusting the focal length. This
adjustment is performed to minimize a loss function (L2 norm) that measures the error
between the projected 2D pose and the annotated 2D pose. Equation (3.2) outlines the
optimization process used in this approach.

f̂ = fi − α∆L(fi) (3.2)

Here, f̂ and fi represent the updated and previous focal lengths respectively, and α
and ∆L(fi) represent the learning rate and the gradient of the loss function respectively.

During each iteration, the gradient of the loss function with respect to the focal length
is computed. This gradient guides the adjustment of the focal length towards values that
result in a more accurate 2D pose projection. By iteratively updating the focal length in
the direction that reduces the loss, the mapping between 3D world coordinates and 2D
camera coordinates is progressively refined. This iterative optimization scheme enhances
the accuracy of the 3D-to-2D projection by effectively incorporating camera parameters.

Though gradient descent optimization may converge to local optima, our experiments
demonstrated the optimization landscape for focal length estimation appeared relatively
smooth. Most importantly, the achieved focal length resulted in accurate pose estimation
results.
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3.3 Summary

To summarize, this chapter outlined the data processing module, a critical step in trans-
forming the raw MLBPitchDB collection into a high-quality dataset suitable for analyzing
baseball pitching mechanics. The module addressed three key challenges: player identifi-
cation, data consistency, and the absence of camera parameters.

Firstly, a novel jersey number identification framework was implemented to isolate the
pitcher tracklet within each video. This framework utilizes keyframe identification and
masked autoencoders to extract relevant visual information from the most informative
frames. Secondly, image enhancement techniques improved the visual clarity of the pitcher
within each frame. Finally, data synchronization techniques and camera projection meth-
ods addressed inconsistencies and optimized the 2D pose information of the pitcher.

Through this multi-step processing pipeline, the data processing module successfully
transformed the raw data into a reliable and informative dataset. This prepared dataset
lays the groundwork for further analysis and evaluation of the baseball pitching mechanics.
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Chapter 4

Mitigating Motion Blur in Player
Pose Modeling

This chapter tackles the challenge of motion blur caused by fast-moving actions, particu-
larly those of pitchers in baseball games. We propose a strategy that utilizes strategic blur
augmentations applied to a pose estimator model. This approach significantly improves
the model’s ability to handle motion blur. The input data used for training and fine-tuning
the proposed models are the preprocessed data from Chapter 3. Furthermore, to enhance
the generalizability of the pose estimation models, we augment the dataset introduced in
Chapter 3 with ”in-the-wild” data from YouTube.

4.1 Overview

A key challenge in pose estimation of humans with agile actions from broadcast videos
is the quality of the input image, as factors such as motion blur and self-occlusion can
degrade the performance of the reconstruction. In Figure 4.1, we illustrate an example of
the challenges posed by a substantial motion blur effect during the pitching action, coupled
with self-occlusion from the homeplate view. These issues underscore the complexity of
the task and emphasize the need for robust and sophisticated methods to address such in-
herent limitations in the data. While some prior works have addressed motion blur caused
by the camera [29, 115, 1], the problem of human-articulated motion blur remains largely
unexplored. The impact of such motion blur on human pose estimation is significant. Sig-
nificant advances have been made in tackling this issue [142, 85, 109], however, challenges
persist when dealing with dynamic backgrounds or fast-moving human motions.
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Figure 4.1: Sequence [91] captured at 30 fps from the front of home plate view.

Thus, in this chapter, we present a unique approach for accurate pose estimation of
pitchers in baseball games, considering the challenges addressed previously. Unlike ex-
isting methods that rely on complex pipelines, we propose a strategy centered on smart
augmentation effects. By augmenting the training data with selective motion blur effects,
we enhance the network’s ability to learn and adapt to these effects. The inclusion of
in-the-wild data from the Internet significantly bolstered the network’s generalization ca-
pabilities to different camera positions and lighting conditions. This chapter highlights the
effectiveness of a focused augmentation strategy and challenges the conventional notion of
complex pipelines to handle motion blur in the sport of baseball.
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4.2 Preliminary

4.2.1 Vision for Sports Analytics

In recent years, significant advancements have been made in sport-related pose estimation
and body modeling techniques, which have greatly contributed to accurate performance
analysis and understanding of human movement in sports. These techniques address com-
mon challenges faced in vision-based sports analytics, such as blur and occlusion. One
approach, proposed by [109], presents a unified framework that combines deblurring and
holistic 3D human body reconstruction. When the human reconstruction module is inte-
grated, the deblurring module benefits from the human reconstruction loss, resulting in
improved performance. Another approach, introduced by [85], focuses on a newly gener-
ated blurry human dataset and localized adversarial modules. Although these techniques
have demonstrated significant improvements, they still encounter limitations, particularly
in scenarios with dynamic backgrounds and significant motion differences between frames.
Further research is needed to overcome these challenges and advance the effectiveness of
vision-based sports analytics.

4.2.2 Mitigating Motion Blur

Most research on motion blur tackles camera-induced blur [29, 115, 1]. This is because
camera blur affects the entire image uniformly, making it easier to model and potentially
remove. Human motion blur, however, is far more challenging. Unlike camera blur, it
varies across the image depending on the person’s movement and scene complexity. This
scene-dependence makes it difficult to isolate and address.

While limited research tackles human motion blur [107, 85, 109], some approaches show
promise. FrankMocap [107] introduces random motion blur during training for 3D hand
pose estimation. This helps their model achieve robust hand reconstruction, especially from
real-world videos. Lumentut et al. [85] propose an end-to-end framework that combines
deblurring with 3D pose estimation. D2R [109] employs a similar strategy, utilizing a
specialized deblurring module within a holistic HMR technique. Both frameworks leverage
the deblurred image to estimate accurate SMPL parameters.

24



4.3 Methodology

The proposed approach comprises several key steps aimed at enhancing the motion blur
effect and estimating the 3D body model of the pitcher. Each pitch sequence is represented
by a set P̂ = {Ft : Ft ∈ RH×W×3}tnt=1. To augment the motion blur effect, the approach
utilizes a motion blur learning module, where pairs of subsequent frames are taken for
motion flow analysis. Each frame is divided into k patches of equal size from which N
patches are selected to induce motion blur. The motion flow vector M(t)

k of each patch is

then estimated, which is denoted as Mt
k =

∑i,j=H,W
i,j=0,0 vij where vij is the flow vector for

each patch at pixel position (i, j). Then, N patches with most Mt
k value is selected as the

target regions to introduce motion blur effect.

Next, the 2D pose of the pitcher in each frame Ft is estimated, where the input is a frame
containing the pitcher, and the output is a pose representation denoted as P(t)

2D ∈ RJ×2,
where J represents the total joints of the pitcher. Following the 2D pose estimation, the
3D pose of the pitcher is estimated by utilizing s consecutive sets of 2D pose data as the
receptive field, where the input is denoted as P2D ∈ Rs×J×2. The output of the 3D pose
estimation is a pose representation that is denoted as P3D ∈ R1×J×3.

The 2D and 3D poses are then concatenated to form the input for the 3D body model,
denoted as P(t)

concat ∈ R1×J×5, which is the concatenation of its corresponding P2D and P3D.
The output of the 3D body model is represented as H3D ∈ RV×3, where V represents the
human vertices of the mesh.

4.3.1 Motion Blur Learning Module

The motion blur learning module aims to address the motion blur challenges of the dataset
by augmenting the dataset with extra synthetic data mimicking it in a realistic manner. It
essentially provides the network with different opportunities to see and learn from different
instances of motion blur, by increasing the frequency and consistency of the effects, thereby
increasing the robustness of the challenge.

To achieve realistic synthetic effects, our approach comprises a series of deliberate
steps. Initially, we estimate the motion flow vectors between consecutive pairs of images.
Subsequently, we integrate a two-step process to discern the specific regions (patches) where
motion blur should be induced. This process involves a selective identification of patches
that exhibit significant motion, ensuring a targeted approach to motion blur application.

The processed consecutive images from the dataset processing module (Section 3.2) are
passed through a motion flow estimation algorithm proposed by [51]. It uses a transformer
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Figure 4.2: Overview of the proposed system. (a) The motion blur learning module creates
synthetic blur effects on the pitch sequences to learn better features and generalize well
despite such effects. (b) In-the-wild data is leveraged to enhance the robustness of the
model on diverse environmental conditions. (c) A regressor-based 2D pose estimator to
train the data from the motion blur learning module and the in-the-wild data. (d) A
transformer-based 3D pose estimator to train on sequential 2D pose data to estimate the
3D pose. (e) Concatenation of the 2D and 3D poses to estimate the 3D body mesh using
spectral GCN.
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network to compute the attention matrix based on self-similarities to study the long-range
dependencies between pixels of the same reference frame, which is then used to aggregate
the motion features represented as shown in Equation (4.1) which is then augmented to
the method proposed by Recurrent All-Pairs Field Transforms (RAFT) [119]. This motion
flow algorithm was utilized specifically, considering the fact that it can handle occluded
regions well since it also considers the self-similarities between frames. Let x ∈ RN×Dc

denotes the appearance features and y ∈ RN×Dc denotes the motion features.

ŷt = yt + λ

N∑
j=1

A(θ(xt), ϕ(xj), σ(yj)) (4.1)

Here, fi represents motion features, θ, ϕ and σ denotes the projection of the query,
key, and value, λ denotes the learned parameter and A denotes the self-similarity attention
function.

The procedure for selectively inducing motion blur in specific regions involves a sequen-
tial two-step approach following the acquisition of motion flow vectors between consecutive
frame pairs. This method comprises Patch Initialization and Patch Selection stages. In
the Patch Initialization stage, individual images are partitioned into 4× 5 patches. Subse-
quently, in the Patch Selection stage, a total of N patches are identified by ranking them
based on the magnitude of their associated motion flow vectors. These selected patches
are chosen as the targeted regions for inducing motion blur. Notably, this two-step process
offers a distinct advantage by ensuring the introduction of motion blur is focused on regions
that exhibit significant motion.

The process of applying motion blur to the chosen patches involves the utilization of
a motion blur filter. This filter is inherently oriented and is parameterized by a rotation
matrix. The angle of rotation (ω), and the scale factor sf are key determinants of the filter’s
behavior. This oriented filter is centered at coordinates (ks/2, ks/2), where ks denotes the
kernel size. Notably, this filtering approach is applied to the selected N patches. The
filtering procedure can be formally represented as:

B(x, y) = R∑
R

∗ Ik(x, y) (4.2)

where,

R =
[
cos(ω)·sf − sin(ω)·sf (ks//2)·(1−cos(ω)·sf )+(ks//2)·sin(ω)·sf
sin(ω)·sf cos(ω)·sf (ks//2)·(1−cos(ω)·sf )−(ks//2)·cos(ω)·sf

]
(4.3)
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Here, B(x, y) represents the filtered pixel value at position (x,y) of the blurred patch.
Ik denotes the kth patch of the image and (∗) denotes the convolution operation between
rotation matrix R. The summation of R in the denominator of the fraction ensures nor-
malization, preserving the intensity of the patch. This normalization prevents unwanted
intensity changes and contributes to a realistic motion blur effect.

4.3.2 In-the-Wild Video Integration

Furthermore, to enhance the generalizability and robustness of the pose estimator, we
leveraged videos from various public sources, featuring slow-motion recordings of pitching
actions in professional baseball games or practice sessions, captured at high resolution.
This strategic inclusion of external data offered two pivotal advantages: diversity and an
abundance of training data, both of which aided to capture a wide spectrum of pitching
scenarios, which included different players, camera angles, lighting conditions, and pitching
styles.

First, a diverse set of videos (vs) were captured from publicly available sources on the
Internet. These videos consisted of slow-motion videos of pitching action in professional
baseball games or practice seasons captured at high resolution. Then, to train our pose
estimator using these videos, we first estimated the pose of the pitcher in each frame,
effectively generating pseudo-ground truth data for the corresponding frames. Next, to
emulate the effects of movements and challenges often observed in low-quality videos, we
employed the blurring strategy proposed in Section 4.3.1. This technique induced motion
blur in all fast-moving regions of every image within the videos. By subjecting the model to
this motion-blurred data, it learned to handle scenarios characterized by motion artifacts
and low-quality video conditions, thus enhancing its resilience in practical settings.

Consequently, the motion blur-induced images, along with their corresponding pseudo-
ground truth data were included in the training dataset alongside the existing data. This
comprehensive training approach capitalized on the combination of diverse video sources,
accurate pose estimation from high-quality videos, and exposure to motion blur-induced
images, resulting in a pose estimator that demonstrated robustness and proficiency in
estimating poses, especially under challenging conditions.

4.3.3 Human Pose Estimation

Estimating the 3D body model of the pitcher offers several distinct advantages over tra-
ditional 2D and 3D pose estimation approaches. It facilitates comprehensive analyses,
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including the assessment of the pitcher’s interaction with the environment, accurate com-
putation of pitch trajectories and release points, and detailed biomechanical evaluation.
By harnessing the power of 3D body model estimation, our understanding of the pitcher’s
movement patterns and biomechanics becomes significantly enriched, leading to valuable
insights for optimizing performance and injury prevention strategies.

Thus, to estimate the 3D body model of pitchers in each frame, we first enhance the
training data by incorporating synthetic artifacts proposed in Sections 4.3.1 and 4.3.2.
This augmented dataset is then used to train a regressor-based 2D pose estimator as
described in PEFormer [99]. In contrast to SOTA estimators that rely on heatmaps, we
opted for a regressor-based approach due to potential challenges in achieving accurate
overlap between the 2D pose of the pitcher obtained through the optimization process
of the camera projection (explained in Section 3.2.4). Subsequently, a vision transformer
network proposed by MHFormer [74] is used to lift sequences of estimated 2D poses to 3D,
resulting in the 3D pose for each corresponding input frame. The loss functions leveraged
for 2D and 3D pose estimator are defined as:

Lpose =
1

N

N∑
i=1

1

J

J∑
j=1

∥kp(ij)pred − kp
(ij)
gt ∥γ, (4.4)

where,

∥ · ∥γ =

{
∥ · ∥2, if γ = 2 (for P2D)

∥ · ∥3, if γ = 3 (for P3D)

and kp
(ij)
pred and kp

(ij)
gt corresponds to the estimated and ground truth pose from the pose

estimator. ∥ ·∥γ denotes the Euclidean distance between the γ dimensional pose keypoints.

P2D and P3D obtained for each frame are then concatenated into Pconcat ∈ RJ×5 and
fed into a spectral convolution network [18] inspired by the works of Pose2Mesh [31]. The
goal is to directly map the concatenated 2D and 3D poses to the body mesh of the pitcher.
The loss function employed to train the mesh network is defined as:

Lmesh = λvLv + λjLj + λnLn + λeLe (4.5)

Here, Lv represents the L1 distance between the output mesh and the ground truth
mesh. Lj measures the loss between the 3D pose of the predicted mesh and the ground
truth mesh. Ln corresponds to the loss of smoothness consistency and Le denotes the loss
of edge length consistency. The weights for each loss function are denoted by λ.
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4.4 Experimentation

Training details. The training process was conducted on a system equipped with an In-
tel i7 processor (16 cores, 16 GB RAM) and an Nvidia 3050Ti GPU with 4GB of dedicated
RAM. For the training process, the dataset was split according to the specifications men-
tioned in the Chapter 3. Both pose estimator models underwent training for 100 epochs,
utilizing a batch size of 16 along with a total of 16 workers for concurrent processing.

For 2D pose estimation, a cross-covariance encoder [3] was employed, along with a
simple transformer decoder [71]. The input image was divided into patches of size 16× 16,
which were then flattened into tokens. The AdamW optimizer was used with a weight
decay of 10−4, and the learning rate was set to 10−5 for the encoder and 10−4 for the
decoder. For 3D pose estimation, the Adam optimizer was utilized along with a Reduce
Learning Rate on the Plateau scheduler. The scheduler had a patience of 5 and reduced
the learning rate by a factor of 0.3. The sequence length was fixed at 27. The mPJPE [50]
was employed as a loss function for pose evaluation, as shown in Equation (4.4). Ground
truth mesh models were not available for training the 3D models. Thus, pseudo-ground
truths were generated using the method described in [101]. The Learning Rate (LR) was
initialized as 10−4, and a multistep LR scheduler with LR factor of 0.1 was used. The
RMSProp optimizer [48] was used to optimize the model during training.

4.4.1 Motion Blur Learning

A thorough comparative analysis against existing approaches can be visualized from Figure
4.3, which highlights the substantial advancements achieved through our proposed method,
particularly evident during pitching actions in the second row. The results demonstrate a
notable enhancement in the 3D body model, reaffirming the effectiveness and superiority
of our approach.

To strike a balance between augmentation and the complexity of the augmenting task, it
is pivotal to avoid over-augmentation, as it can lead to overfitting of the network and hinder
performance on unseen data. To determine the optimal hyperparameters, we performed
three additional experiments, the results of which are presented in Tables 4.1 - 4.3.

Varying the number of filters

We aimed to find the optimal number of filters that could accurately simulate realistic
motion blur effects. By varying the number of filters used, we assessed the performance of

30



Figure 4.3: Qualitative evaluation of 3D human model in handling motion blur effects.
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the pose estimator as shown in Table 4.1.

Table 4.1: Ablation study on varying number of filters for motion blur effect.

Filters MSE ↓

0 1.15
1 0.68
222 0.550.550.55
3 1.43
4 2.28
5 3.44

The increasing test loss beyond a certain point in Table 4.1 indicates that the network
encounters difficulties in extracting informative features necessary for accurate pose esti-
mation as the degree of motion blur intensifies. This shows that an excessive number of
blur filters will lead to a diminishing capacity of the network to effectively handle and
interpret motion blur in images.

Different Patch Size

We conducted a study to investigate the impact of different patch sizes on the performance
of the pose estimator. By varying the patch sizes (spatch) and the number of patches
(N ) in the input frames, we assessed how these factors influenced the accuracy of the
pose estimator. This experiment enabled us to discover the best spatch and N for optimal
performance.

Table 4.2: Ablation study on the region size and frequency of motion blur effect. The
values correspond to the MSE loss for the estimated 2D pose with different parameters.

spatch

N
1 3 5 7 9

10 0.83 0.74 0.66 0.64 0.67
20 0.71 0.57 0.62 0.60 0.62
30 0.68 0.550.550.55 0.61 0.639 0.59
40 0.74 0.63 0.68 0.75 0.78
50 0.77 0.75 0.71 0.83 0.97
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The extensive study conducted in 4.2 demonstrates that the optimal results were
achieved when using three patches, each with a patch size of 30. This finding aligns
with qualitative observations, as this particular hyperparameter setup resulted in the most
realistic blur pattern.

Different Patch Types

To identify the most suitable patch type that closely resembles a realistic representation
of the motion blur effect, we conducted experiments involving different patch types. The
results of this experiment are summarized in Table 4.3.

Table 4.3: Comparison with different patch types

Patch Type MSE ↓

None 1.15
Binary Mask 2.12
Inpainting 1.57

Gaussian Blur 0.99
Motion BlurMotion BlurMotion Blur 0.550.550.55

As shown in the results in Table 4.3, motion blur filters emerged as the superior method
by successfully capturing the essence of rapid motion in a more accurate manner.

Taking into account the findings from Tables 4.1 to 4.3, the most optimal setup was
with the adoption of a motion blur patch type that utilizes 2 filters, a patch size of 30, and
3 patches. This combination of parameters has demonstrated a greater ability to provide a
substantial representation of the data, thereby significantly enhancing the generalizability
of the pose estimator in handling motion blur effects. This finding contributes to effective
pose estimation by handling challenging scenarios characterized by fast-moving actions in
the images.

4.4.2 Human Pose Estimation

Different data modules

To evaluate the effectiveness of our method, we conducted tests on the curated dataset as
described in Chapter 3. Specifically, we evaluated the performance of our 2D and 3D pose
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estimation algorithms after augmenting the dataset with motion blur effects and In-the-
Wild (ItW) videos. The results of these evaluations are summarized in Table 4.4.

Table 4.4: Results of the estimated pose with different modules for training.

Base Model ItW Blur MSE ↓ MPJPE ↓

✓ 1.05 1.93
✓ ✓ 0.88 1.61
✓ ✓ 0.55 1.47
✓ ✓ ✓ 0.480.480.48 1.231.231.23

By incorporating both ItW data and motion blur modules, the performance of the base
model is significantly improved. The 2D loss shows a substantial improvement of 58%,
indicating enhanced accuracy in estimating the 2D pose of the human body. Subsequently,
this improves the performance of the 3D pose estimator by 36%.

Comparison on SOTA pose estimators

The experimental evaluation in Table 4.5 demonstrates the performance improvement
achieved by incorporating our approach during the training of SOTA 2D pose estimators
using our dataset. Our objective was to show the efficacy of our approach in improving
the overall performance of the pose estimators.
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Table 4.5: Performance of different SOTA 2D pose estimation approaches with the pro-
posed motion blur learning module.

Method Type Motion Blur MSE ↓

Xu et al [134] Heatmap 1.37
Ke et al [117] Heatmap 1.46

Panteleris et al[99] Regressor 1.15
Li et al. [72] Heatmap 1.83
Mao et al. [90] Regression 1.26

Xu et al [134] Heatmap ✓ 1.17 (+0.20)
Ke et al [117] Heatmap ✓ 1.21 (+0.25)

Panteleris et al[99] Regressor ✓ 0.55 (+0.60)
Li et al. [72] Heatmap ✓ 1.46 (+0.37)
Mao et al. [90] Regressor ✓ 0.61 (+0.65)

The results indicate a significant improvement in the pose estimators’ performance af-
ter integrating with the proposed approach, primarily due to its ability to handle motion
blur. Furthermore, the comparison between heatmap-based and regression-based tech-
niques highlights the limitations of the former in addressing the challenges of our dataset
discussed in Section 4.3.3.

4.5 Summary

The chapter proposes a unique approach to accurately estimate the pose of pitchers in
baseball games by addressing the challenges posed by the motion blur effect. An innovative
augmentation technique has been proposed to increase the frequency and consistency of
motion blur in a strategic pattern to enhance the network’s ability to learn and adapt
to these effects. Integrating in-the-wild video data into the training module with pseudo-
ground truth pose information aided the network to be effective against the variable lighting
and camera positions.

By training a 2D and 3D pose estimator on these data, significant improvements in
the accuracy of pose estimation have been observed, particularly during pitching actions.
Thus, this approach demonstrates a more focused and strategic augmentation strategy to
induce motion blur can yield improvements in pose estimation emphasizing the importance
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of thoughtful augmentation in addressing the motion blur effect and offering an alternative
perspective to traditional complex pipelines.
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Chapter 5

Out-of-Distribution 3D Human
Modeling

This chapter dives into creating robust 3D human models from single images. It introduces
a novel architecture that leverages scene-depth information to ensure that the generated
3D mesh reflects the surrounding environment. To further enhance accuracy, particularly
for complex poses, the architecture incorporates a distribution refinement module that
minimizes the difference between the predicted and the actual pose.

5.1 Overview

Despite the notable progress in monocular HMR, HMR struggles with two key challenges-
appearance domain gap and depth ambiguity. Controlled environments, often used for
training, offer a setting where data collection and annotation are manageable and pre-
cise. However, the challenge arises when the trained model is applied to in-the-wild data,
where real-world variability, such as lighting conditions, backgrounds, and poses, differs
significantly from controlled settings. Second, depth-ambiguity issues plague single-view
images. In response to the latter challenge, researchers have proposed solutions that take
advantage of temporal information extracted from video input to enhance understanding
of human motion [59, 55]. However, these temporal approaches have entailed significant
computational overhead.

Obtaining ground truth mesh labels for human mesh reconstruction is a tedious task,
mainly due to challenges like complexities of dynamic human motion, scene dynamics,
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resource constraints, and privacy concerns. In response to the inherent difficulty in obtain-
ing accurate ground truth labels, other researchers resort to using pseudo-ground truth
to train models [76, 44, 31, 62]. Consequently, the modeling of human forms is inher-
ently biased due to the presence of noisy labels. Moreover, the generalization of HMR for
Out-of-Distribution (OOD) poses, as discussed earlier, presents an immensely challenging
problem. The output can be modeled as a distribution of plausible 3D pose using normal-
izing flows and use information such as 2D keypoints or segments of the human body as
priors to provide deterministic predictions for downstream tasks [64, 139]. However, since
these models use normalizing flows to estimate the underlying output distribution, they
do not predict out-of-distribution data as shown in [58] and do not solve the model bias to
actual data, especially in scenarios with noisy labels and uncertainties. This is discussed
in detail in Section 5.2.1.

Against this backdrop, in this chapter, we introduce a novel approach to tackle these
issues through a depth and distribution-aware framework designed for the recovery of hu-
man mesh from monocular images [16]. In particular, we explicitly integrate scene-depth
information from monocular cameras obtained from prior depth models (termed as pseudo-
depth) into a transformer encoder via the cross-attention mechanism. Moreover, we employ
a residual log-likelihood approach to learn deviations in the underlying distribution, facil-
itating a refinement module in the training process. To further refine the mesh shape and
feature relationships, we introduce a dedicated silhouette decoder and a masked modeling
module. To the best of our knowledge, D2A-HMR is the only framework to explicitly
incorporate depth priors and systematically learn the mesh distribution disparity between
the underlying prediction and ground truth distributions.

5.2 Preliminary

5.2.1 Normalizing Flow

Normalizing flow is a technique to efficiently transform a simple distribution into a complex
one through a series of invertible transformations [58, 64]. It applies to probability density
estimation, which can be used to estimate the likelihood. Previous work including [139]
and [12] uses normalizing flows to learn a priori distributions of plausible human poses.
ProHMR [64] focuses on modeling the output of the human mesh as a distribution over all
the different possible meshes. However, it utilizes normalizing flows to directly predict the
exact underlying distribution which is demonstrated to perform poorly for OOD data [58].
RLE [70] uses normalizing flow to minimize the difference between the distributions of the
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ground truth and predicted 2D poses rather than using the output distribution to sample
one particular pose, thereby boosting the performance of regression-based pose estimation
techniques.

Inspired by the literature on residual log-likelihood in 2D human pose estimation [70]
and the shortcomings of existing HMR approaches, our approach focuses on miti-
gating distribution discrepancies of the output and ground truth meshes by
leveraging normalizing flow techniques. This alleviates the problem of poor perfor-
mance in OOD data as we use normalizing flows in the refinement module to minimize
the difference between the output mesh distribution and ground truth mesh distribution
instead of predicting the output poses/meshes using the captured output distribution.

5.2.2 Attention for Human Mesh Recovery

Attention mechanisms have been shown to be effective for HMR by enabling models to focus
on the most relevant parts of the input data. METRO [76] uses self-attention to reduce
ambiguity by establishing nonlocal feature exchange between visible and invisible parts
with progressive dimensionality reduction. SAHMR [112] uses cross-attention between
image and scene contact information to improve the posture of the regressed mesh. The
recently proposed JOTR [69] uses self-attention to study the dependencies of 2D and 3D
features to address problems with occlusion. PSVT [104] uses a spatio-temporal attention
mechanism to capture relations between tokens and pose/shape queries in both temporal
and spatial dimensions. Similarly, OSX [75] uses a component-aware encoder to capture the
correlation between different parts of the human body to predict the whole-body human
mesh.

We propose a parallel network composed of two self-attention modules to learn global
dependencies within the image and pseudo-depth features, respectively, and a cross-attention
module to learn inter-modal dependencies between the image and pseudo-depth features.
This allows the network to learn a more comprehensive representation for accurate 3D
mesh recovery.

5.3 Methodology

The overview of the proposed D2A-HMR framework is presented in Figure 5.1. The
D2A-HMR technique inputs the RGB image and outputs the vertices of the 3D human
mesh. In this section, we discuss the architecture and training objective of D2A-HMR.
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Figure 5.1: Overview of the D2A-HMR model architecture. Given an image (I), we
first incorporate a transformer backbone (E ) to estimate the depth map (D) and a CNN
backbone (F ) to extract the features from the images. Positional embedding is applied
to both image and pseudo-depth features, utilizing a hybrid approach for image tokens
(zimg) and a learnable position embedding for pseudo-depth tokens (zdepth). Self-attention
is performed on zimg and zdepth, resulting in z′img and z′depth, respectively. Subsequently,
cross-attention is applied between z′img and z′depth to produce zc. The learnable fusion
gates combine z′img, z

′
depth, and zc, followed by layer normalization and a Multi-Layer Per-

ceptron (MLP). The resulting gated tokens (z) are input into two distinct refinement
modules: a decoder (D) for silhouette estimation and a regressor head, R which incorpo-
rates normalizing flow (DM) for distribution-aware joint vertex estimation.
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The feature encoding process begins with the extraction of features from the image and
pseudo-depth map using a CNN backbone, followed by hybrid position encoding. These en-
coded features are then input to the transformer encoder, which engages in cross-attention
with the pseudo-depth cues and the input image. Following this, the refinement module
comes into play, incorporating the distribution matching, silhouette decoder, and masked
modeling components to regularize the model during the training process. The algorithm
1 outlines the key steps of the D2A-HMR model.

Algorithm 1 Distribution and Depth Aware Human Mesh Recovery

1: Input: Image (I)
2: Initialization:
3: E(I) → D
4: F(I, D)
5: Positional Embedding:
6: Pe(= ω1Pl + ω2Ps) → zimg, zdepth
7: Self-Attention (MHSA):
8: MHSA(zimg) → z′img

9: MHSA(zdepth) → z′depth
10: Cross-Attention (MHCA):
11: MHCA(z′img, z

′
depth) → zc

12: Learnable Fusion Gates:
13: z = ω3z

′
img + ω4z

′
depth + (1− ω3 − ω4)zc

14: Masked Modeling:
15: qmask = Mask(z)
16: Distribution Matching:
17: R(z) → σ, µ
18: µ̄ = (µ− µgt)/σ → NF → LRLE

19: Silhouette Decoder:
20: Isilh = D(z, k, s, p)
21: Output: 3D mesh vertices, P = R(z), P ∈ ℜ6890×3

5.3.1 Architecture

Feature Encoding. The initial step involves passing the input image and depth map
through a CNN backbone to extract pertinent features. Subsequently, to explicitly model
the structure of the features, position embedding is applied to these extracted features.
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Specifically, we implement a hybrid positional encoding (He) similar to [90] illustrated in
Equation (5.1), for the image tokens. This hybrid approach capitalizes on the strengths
of both learnable position embeddings (Hl) and sinusoidal position embeddings (Hs). Hl

adapts to task-specific positional patterns, proving highly effective in capturing intricate
spatial relationships. Meanwhile, Hs contributes to the globally consistent positional un-
derstanding, capturing more information about the position. This combination optimally
balances adaptability and global context, yielding fine-grained spatial patterns and general
positional relationships.

He = ω1Hl + ω2Hs (5.1)

where ω1 and ω2 are learnable parameters controlling the position embedding contribution
of both types.

Transformer Encoder. The utilization of the transformer encoder in D2A-HMR is
driven by the overarching goal of effectively learning pseudo-depth cues from the input data.
Using self-attention mechanisms on the encoded features derived from both modalities
(image and pseudo-depth map), namely zimg and zdepth, the transformer encoder facilitates
understanding of spatial relationships within each domain. Furthermore, we propose to
use a cross-attention mechanism to establish intricate connections between the image and
pseudo-depth information. The resulting fused representation, denoted as z, encapsulates
rich depth cues, crucial for the subsequent regression of human vertices.

The embedded features, denoted as zimg and zdepth, serve as input tokens to the trans-
former encoder, embodying our pursuit of learning pseudo-depth cues. Using self-attention
mechanisms, the encoder refines zimg and zdepth by capturing spatial relationships within
each modality, producing updated features z′img and z′depth, respectively. Subsequently,
the introduction of a cross-attention mechanism facilitates connections between image and
pseudo-depth features. The resulting cross-attended tokens denoted as zc, are then fused
with z′img and z′depth from their respective attention heads, yielding a final fused represen-
tation denoted as z, as illustrated in Equation (5.2). To facilitate this fusion, learnable
fusion gates are employed, similar to the position encoding methodology. These gates
adaptively emphasize the importance of each source, enhancing the model’s capacity to
capture meaningful relationships between the image and pseudo-depth features.

z = ω3z
′
img + ω4z

′
depth + (1− ω3 − ω4)zc (5.2)
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Here, in Equation 5.2, ω3 and ω4 are the learnable parameters. Once the fusion is done, z
is normalized and fed as input to an MLP to get the output tokens. This holistic approach
enables our model to effectively capture intricate patterns and dependencies within the
input image and the 3D information of the scene. A visual illustration of the transformer
encoder is shown in Figure 5.1.

5.3.2 Refinement Module

The refinement module in the D2A-HMR framework encompasses three key components,
each designed to enhance the model’s capabilities in capturing different aspects of human
pose and shape. First, the distribution matching component aids in refining the model’s
representation by aligning the output mesh distribution to the ground truth mesh distri-
bution. This adaptation enables the model to capture and adapt to inherent variations in
the distribution of training data, promoting a more generalized performance that extends
beyond the specific characteristics of the training data. The second component, the silhou-
ette decoder, focuses on optimizing the model’s capacity to align the shape with the input
image by adeptly capturing the outlines of the human subject. This component contributes
significantly to the model’s ability to refine and improve its representation based on the
visual cues present in the input data. Lastly, the masked modeling component serves to
empower the model by learning from available information, thereby enhancing its ability
to capture long-range relationships among features in the image. This integration ensures
that the model can leverage relationships across the entire input, contributing to a more
comprehensive understanding of the underlying human pose and shape.

Distribution Matching. To align the model closely to the actual underlying data dis-
tribution, we incorporate the normalizing flow mechanism proposed by [36] within the
D2A-HMR framework. Our goal is to refine the model by learning the disparity between
the predicted and groundtruth distributions. The output tokens z from the transformer
encoder are passed via a regressor (R) to find the standard deviation σ and the mean µ
which control the scale and position of the distribution respectively. It is used to transform
the initially assumed Gaussian distribution. The distribution modeled by the flow (Pϕ(x̂))
is deconstructed into three essential terms, as expressed in the equation:

logPϕ(x̂) = logQ(x̂) + log
P (x̂)

c ·Q(x̂)
+ log c (5.3)
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The first term, logQ(x̂), quantifies the logarithmic probability of the data under the

simple distribution. The second term, log
P (x̂)

c ·Q(x̂)
, represents the residual log-likelihood,

serving as the distinction between the log-probability of the data under the optimal un-
derlying distribution and the log-probability under the tractable initial density function.
The third term, log c, functions as a normalization constant.

Silhouette Decoder. To optimize shape alignment, we used a specialized decoder to
reconstruct silhouettes. Leveraging features from the transformer encoder, this decoder
employs a sequence of deconvolution layers with ReLU activation and dropout, culminating
in a fully connected layer. This intricate reconstruction process significantly augments
the model’s capability to generate high-quality silhouette representations. To acquire the
pseudo-ground truth silhouette of human subjects, we utilize an existing segmentor [77].

Masked Modeling. Prior works have demonstrated the efficacy of masked modeling in
elucidating diverse relationships within training datasets, spanning textual, vertex, and
image domains respectively [35, 76, 100]. In alignment with these established works, we
adopt random masking of the embedded features to recover the vertex of the human body.
By deliberately obscuring a percentage of embedded features during training, our model
is forced to rely solely on the unmasked features extracted from the image. This enables
a comprehensive understanding of both short and long-range relationships among the fea-
tures, contributing to the overall performance of D2A-HMR framework.

5.3.3 Loss Functions

In this subsection, we present the comprehensive training objectives used to recover the
human mesh in our model. These objectives consist of a weighted combination of various
loss components, each serving a specific role in refining the model’s output.

The loss functions Lv and Lj are computed using the L1 loss metric, aiming to minimize
the disparities between the model’s output vertices and the 3D human pose coordinates
with the ground truth vertice and pose representation. Simultaneously, L̂j leverages the
same loss metric to optimize the 3D pose by regression of the output mesh vertices following
[76], seeking alignment with the ground truth pose coordinates. To enhance the alignment
between image and mesh representations, camera parameters are employed to reproject
and infer the 2D human pose coordinates represented with L′

j. This reprojected output is
refined by applying loss optimization using L1.
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As mentioned in Section 5.3.2, a distribution matching regularizer is used to penalize
the model for predicting outputs that are unlikely under the underlying ground truth dis-
tribution. Equation (5.4) shows the distribution regularizer (LRLE) used in the D2A-HMR
architecture.

LRLE = − logQ(µ̄g)− logGϕ(µ̄g)− log c+ log σ (5.4)

Here, in Equation (5.4), Gϕ(µ̄g) is the learned residual distribution of the predicted value
µ̄g where µ̄g = (µg − µ)/σ. Here, µg is the ground truth deviation and ϕ is the flow model
parameter. We also incorporate silhouette loss, denoted as Lsilh, which regularizes the
model by controlling the shape of the reconstructed mesh. The overall objective function
is shown in Equation (5.5), which represents a combination of these individual losses.

L = λdLRLE + λvLv + λ3D(Lj + L̂j) + λ2DL′
j + λsLsilh (5.5)

where λd, λv, λ3D, λ2D and λs denote the weights attributed to the training objec-
tives concerning the distribution, vertices, 3D pose coordinates, 2D pose coordinates, and
silhouettes, respectively.

5.4 Experimentation

5.4.1 Implementation Details

Training Details. Training was carried out on an infrastructure comprising three NVIDIA
A6000 GPUs. The network was trained for 500 epochs, with a batch size of 48, and 24
parallel workers. Adam optimizer, configured with a learning rate of 10−4 and beta values
of 0.9 and 0.99, was used for optimization. The network was designed to output a coarse
mesh representation containing 431 vertices. This output was subsequently upsampled [63]
to the original mesh’s 6890 vertices, utilizing learnable MLP layers, resulting in the model’s
ability to capture fine-grained spatial details.

5.4.2 Results

We assess the performance of the proposed D2A-HMR framework by comparing it with
established state-of-the-art techniques for HMR. The results, presented in Table 5.1, high-
light the competitive performance of our method across various metrics on the Human3.6M
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Table 5.1: Comparison to state-of-the-art 3D pose reconstruction approaches on 3DPW
and Human3.6M datasets. Bold: best; Underline: second best.

Method
Human3.6M 3DPW

mPJPE ↓ PA-mPJPE ↓ mPVE ↓ mPJPE ↓ PA-mPJPE ↓

V
id
e
o HMMR [55] - 58.1 139.3 116.5 72.6

TCMR [30] 62.3 41.1 111.5 95.0 55.8
VIBE [59] 65.6 41.4 99.1 93.5 56.5

M
o
d
e
l-
b
a
se
d

HMR [54] 88.0 56.8 - 130.0 81.3
SPEC [61] - - 118.5 96.5 53.2
SPIN [62] 62.5 41.1 116.4 96.9 59.2
PyMAF [140] 57.7 40.5 110.1 92.8 58.9
ROMP [118] - - 105.6 89.3 53.5
HMR-EFT [53] 63.2 43.8 98.7 85.1 52.2
PARE [60] 76.8 50.6 97.9 82.0 50.9

M
o
d
e
l-
fr
e
e ProHMR [64] - 41.2 109.6 95.1 59.5

I2LMeshNet [92] 55.7 41.1 - 93.2 57.7
Pose2Mesh [31] 64.9 47.0 - 89.2 58.9
METRO [76] 54.0 36.7 88.2 77.1 47.9

Ours 53.8 36.2 88.4 80.5 48.4
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and 3DPW datasets. The comparative results demonstrate that the meshes generated by
the D2A-HMR framework exhibit superior alignment with the input image. Our method’s
adept understanding of pseudo-depth cues and the distribution contributes significantly to
improved alignment, particularly in handling challenging input scenarios characterized by
depth ambiguities and extreme poses.

To further emphasize the efficacy of our proposed approach, we conducted a qualitative
comparison against several state-of-the-art techniques, as depicted in Figure 5.2. These
techniques include SPIN [62], PARE [60], METRO [76], ROMP [118], and PyMAF [140].
The comparative results clearly demonstrate that the meshes generated by the D2A-HMR
framework exhibit superior alignment with the input image. Our method’s adept un-
derstanding of pseudo-depth cues, distribution, and the person’s silhouette contributes
significantly to improved alignment, particularly in handling challenging input scenarios
characterized by depth ambiguities and extreme poses. This underscores the robustness of
our proposed method for handling complex input conditions.

Table 5.2: Comparison of D2A-HMR on a baseball dataset [17]

Method Acc. ↑ mPJPE ↓

METRO [76] 81.5 37.8
SPIN [62] 84.7 32.1
PARE [60] 84.0 33.7

D2A-HMR (Ours) 87.9 30.6

Table 5.2 presents a comprehensive comparison between our proposed method and the
established state-of-the-art HMR techniques, utilizing the baseball dataset [17]. Notably,
D2A-HMR demonstrates superior performance in terms of accuracy and mPJPE on this
dataset, which is characterized by high player motion blur and instances of self-occlusion.
Qualitative results that show the effectiveness of our approach in handling the complexities
posed by this specific dataset can be visualized in Table 5.3.

The provided results in Figure 5.4 showcase the qualitative performance of the D2A-HMR
approach across Common Objects in COntext (COCO) and various sports datasets. These
visualizations underscore the effectiveness and robustness of our technique in achieving ac-
curate alignment with input images, particularly in challenging in-the-wild scenarios.
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Figure 5.2: Qualitative results. Qualitative comparison of D2A-HMR with SPIN [62],
PARE [60], METRO [76], ROMP [118] and PyMAF [140] on in-the-wild data from different
sports dataset [17, 38, 52] and unusual poses from the internet.
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Figure 5.3: Qualitative results. Inferred 3D mesh of D2A-HMR against some state-of-
the-art HMR techniques on the baseball dataset [17].
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Figure 5.4: Qualitative results. Qualitative comparison of D2A-HMR on COCO and
sports datasets with unusual poses.
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5.4.3 Ablation Studies

To verify the individual impact of each module on the proposed D2A-HMR model, com-
prehensive studies were conducted, as detailed in this subsection. For consistency across
all studies, the 3DPW dataset was utilized as the common benchmark.

Integration of multi-modal data. Experimentation to assess the impact of depth and
distribution matching components within the D2A-HMR are detailed in Table 5.3.

Table 5.3: Ablation study on pseudo-depth and distribution modeling for D2A-HMR eval-
uated on 3DPW dataset

Depth Dist. mPJPE ↓ PA-mPJPE ↓

✓ 92.7 61.8
✓ 90.0 56.9

✓ ✓ 80.5 48.4

Incorporation of both the pseudo-depth and distribution modeling modules in the
D2A-HMR framework is observed to lead to a substantial improvement in the overall
performance of mesh recovery. This observation serves as confirmation that the underly-
ing motivation behind the proposed framework is valid and aids in enhancing the model’s
capabilities.

Depth on mPJPE(z ). Experimentation on exclusively capturing the depth component
of the regressed 3D joints in order to demonstrate its impact on the human pose was
conducted in Table 5.4.

Table 5.4: Ablation study on the impact of depth modeling for D2A-HMR evaluated on
3DPW dataset

mPJPE(z ) ↓ PA-mPJPE(z ) ↓

w/o depth modeling 69.1 58.3
w/ depth modeling 65.4 53.6

A notable enhancement in the z-axis of the reconstructed mesh is evident, as highlighted
in Table 5.4. We computed mPJPE along the z-axis denoted as mPJPE(z), disregarding
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the components x and y of the reconstructed mesh. This experimentation validates that
the incorporation of scene-depth information contributes to an improvement in HMR.

Decoder and Masking Modules. Table 5.5 illustrates the impact of the silhouette
decoder and masked modeling employed within the D2A-HMR framework.

Table 5.5: Ablation study on the silhouette decoder and masked modeling for D2A-HMR
evaluated on 3DPW dataset

Decoder Mask mPJPE ↓ PA-mPJPE ↓

✓ 98.5 67.2
✓ 91.7 58.4

✓ ✓ 80.5 48.4

The observations drawn from Table 5.5 highlight the beneficial impact of incorporating
both the silhouette decoder and masked modeling modules in enhancing the model’s ability
to disentangle the appearance and part-relationship of the person. These modules are
exclusively utilized during the training process of the D2A-HMR framework, contributing
to its improved performance.

Backbones. A comprehensive analysis of D2A-HMRs performance by investigating its
behavior with various backbone architectures was conducted. To establish a strong base-
line, we first trained two ResNet variants for 1000 epochs on the ImageNet dataset [34]
for an image classification task. We also explored HRNet variants trained for 1000 epochs
using the COCO dataset [79] for the image classification task.

Table 5.6: Different input representations as the backbone for D2A-HMR evaluated on
3DPW dataset

Backbone mPJPE ↓ PA-mPJPE ↓

ResNet50 91.1 59.9
ResNet101 89.5 55.8
HRNet-w40 85.2 52.1
HRNet-w64 80.5 48.4
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We notice that HRNet-w64 gives the most positive impact on feature extraction from
both the image and depth maps compared to the ResNet backbones. This can be at-
tributed to HRNet-w64’s effectiveness in capturing both local and global contexts through
its multiresolution fusion representations, thereby enhancing the model’s ability to extract
rich and informative features.

5.5 Summary

In this chapter, we introduced the D2A-HMR technique as an innovative solution to the
persistent challenge of depth ambiguities and distribution disparities in monocular human
mesh recovery. By explicitly incorporating scene-depth information, we have substantially
reduced the inherent ambiguity, resulting in a more precise and accurate alignment of
human meshes. The utilization of normalizing flows to model the output distribution
has been instrumental in regularizing the model to minimize the underlying distribution
disparities, enhancing its resilience against noisy labels, and mitigating biases in human-
form modeling.

Our extensive experimentation on diverse datasets has demonstrated the competitive
performance of the D2A-HMRmethod when compared to state-of-the-art HMR techniques.
Furthermore, it has been noticed that our network outperforms existing work on sports
datasets with OOD data. This proposed framework not only addresses depth ambiguities
and mitigates noise, but also leverages the inherent 3D information present in images,
providing a robust and unambiguous solution for human mesh recovery.
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Chapter 6

Kinematic-driven Pitch Analytics

This chapter focuses on extracting pitch statistics from a broadcast feed. We leverage
the 3D human pose estimation model detailed in Chapter 5 to extract the kinematic in-
formation of the pitcher from the video. Additionally, to address motion blur commonly
encountered during pitching actions, we incorporate the augmentation strategy described
in Chapter 4. This combined approach allows for robust extraction of pitch statistics
despite the challenges posed by motion blur.

6.1 Overview

Current research on baseball game analysis often relies on numerical databases containing
pre-recorded offline data [13, 47, 114, 131]. These methods typically focus on predicting
actions or game statistics based on these historical records. While some approaches use
real-time data, they are often limited to controlled laboratory environments with expensive
motion capture setups [89, 98, 110]. This restricts the generalizability of their findings to
the dynamic and complex situations encountered during live games. Live game broadcasts,
however, offer a more holistic perspective by capturing the entirety of a pitcher’s motion
within the game’s natural environment. This approach overcomes the limitations of con-
trolled settings. However, analyzing broadcast data presents its own challenges, such as
motion blur and low video resolution, which can significantly hinder accurate pitch analysis
and potentially lead to unreliable results.

To bridge the limitations of existing methods and address the challenges of analyzing
real-world live broadcasts, we introduce PitcherNet, an end-to-end automated system de-
signed to predict performance-critical pitch statistics from the kinematic data derived from
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Figure 6.1: 3D player reconstruction and kinematic-driven pitch statistics from
monocular video. We introduce PitcherNet, a pioneering deep learning system that
tackles low-resolution video limitations through efficient 3D human modeling for robust
player alignment (left) and reliable pitch statistics analysis from estimated kinematic data
(right).

live broadcast videos. PitcherNet transcends existing approaches by meticulously analyz-
ing each stage of the pitcher’s movement, from player identification to pose estimation, and
finally pitch analysis. Some crucial pitch statistics that PitcherNet estimates include pitch
position, pitch velocity, ball release point, and release extension. Human mesh recovery
and pitch statistics derived from the PitcherNet system are illustrated in Figure 6.1. To
the best of our knowledge, this is the only system, that extracts pitch statistics extensively
driven from the pitcher kinematics from low-quality broadcast videos.

6.2 Preliminary

6.2.1 Player Tracking and Identification

Various approaches for player identification exist, primarily relying on either facial fea-
tures or jersey numbers. In works such as [88, 7], facial recognition is employed to label
players based on detected face regions. Conversely, jersey number recognition, as seen
in [5, 141, 81, 42, 125], is a prevalent method of player identification. Vats et al. [125]
recently introduced a comprehensive offline tracking framework for ice hockey, employing
1D convolutions for team and jersey number identification. Sentioscope [8] tracks player
interactions using a dual camera setup and model field particles on a calibrated soccer
field plane. DeepPlayer [141] proposes a multicamera player identification system integrat-
ing jersey number patterns, team classification, and pose-guided partial features. Works
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such as [22, 5] incorporate end-to-end trainable spatio-temporal networks for identifying
jersey numbers in ice hockey and soccer. Additionally, [111, 80, 141] utilize convolutions
to extract features and exploit information from the pose of the players to determine the
numbers of the jersey.

Existing player identification approaches rely heavily on distinctive features (such as
clothing, jersey number, and facial features). However, these features are often unreliable
due to clothing variations, occlusions, and varying camera angles. To address these chal-
lenges, we propose a novel approach that decouples player actions from individual tracklets.
This approach shifts the focus from specific player features to the action itself, enabling
robust and accurate player identification even when traditional features fail.

6.2.2 Baseball Pitch Statistics

Previous research has mostly focused on estimating the pitch statistics from existing base-
ball data collection database such as the PITCHf/x system [13, 114, 131]. Works such
as [13] leveraged these prior game statistics to classify pitch types using Support Vector
Machines (SVM) with linear kernel functions, and [114] utilized Linear Discriminant Anal-
ysis (LDA), decision trees, and SVM to find the best apt model to classify pitch types.
Hickey et al. [47] aimed to improve the interpretability alongside accuracy of classification
models used for pitch prediction.

Recently, Manzi et al. [89] proposed a descriptive laboratory study in the setting of 3D
motion-capture to classify pitch throws by analyzing pitcher kinematics. Similarly, Oyama
et al. [98] used motion capture systems to validate the pitching motion of the baseball
by comparing with the calculated angles. Chen et al. [24] proposed a network which can
recognize hand pitching style (overhand, three-quarter, etc.) by extracting the human
body segment and a descriptor representation using star skeletons.

6.3 Methodology

The overview of the proposed system, PitcherNet, is presented in Figure 6.2. The system is
divided into three components: (1) Player Tracking and Identification, involving the
initial detection of all players, subsequent tracking of detected players with the assignment
of unique labels to each tracklet, and the decoupling of actions from the inferred poses
of the players in each sequence in the tracklet to facilitate player classification; (2) 3D
Human Modeling utlizes a 3D human model prior [84] to estimate the pose of the player
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guided by masked modeling, distribution learning, and silhouette masks; and (3) Pitch
Statistics leveraging TCN and kinematic-driven heuristics to reliably capture various pitch
metrics. This section provides a comprehensive exploration of each component, elucidating
the underlying design choices aimed at enhancing the performance of existing techniques
in the context of the proposed system.

T1

T2

T3 (Tp)

Figure 6.2: Overall architecture. Given a video broadcast, we begin by extracting
player tracklets, denoted as T ∈ {T1, T2, ..., Tn}. Each tracklet Tk consists of a sequence of
frames Fi where Fi ∈ RH×W×3 for N frames. These tracklets are then processed through
a TCN, which implicitly decouples player actions and identifies the tracklet of the pitcher,
called Tp. Subsequently, Tp undergoes encoding via an encoder (E) to derive pseudo-depth
information for each frame. The frames, along with their corresponding pseudo-depth data,
are fed into a 3D modeling technique (D2A-HMR 2.0). This framework is responsible for
predicting the 3D mesh and 3D joint positions of the pitcher, facilitating detailed analysis
of various pitch metrics using the temporal kinematic information processing the 3D joint
positions.

6.3.1 3D Human Modeling

Estimating the pose of the pitcher is crucial for effective pitch analysis of the players from
live broadcast video. The input to the 3D human modeling technique is the player of
interest tracklet from the player tracking and identification module detailed in Chapter
3.2.1. To enhance the reliability of pose estimation in challenging, real-world scenarios, we
have advanced the D2A-HMR technique which is detailed in Chapter 5 specifically focusing
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Figure 6.3: Data Augmentation Technique. Pseudo-ground truth pose is collected
using a Transformer model for improved generalizability of the pose estimation model.

on mitigating issues related to baseball sports. The modified version of the D2A-HMR will
be referred to as D2A-HMR 2.0 modeling technique.

D2A-HMR 2.0 leverage a depth encoder called Depth Anything [135] to extract pseudo-
depth, which utilizes the DINOv2 encoder [97] and the DPT decoder [105]. In addition
to the regression of the mesh vertices as output, we also extract the 3D joint coordinates
(J3D). Following [54, 62, 31], the mesh vertices are further regressed to find the 3D regressed
joint coordinates (Jr

3D) using a predefined regression matrix G ∈ RK×M . Here K and M
correspond to the number of joint positions and the number of vertices. Then, the final
3D pose (Ĵ3D) of the person in the input image is formulated as shown in Equation (6.1).

Ĵ3D = ω1J3D + ω2GV3D = ω1J3D + ω2J
r
3D (6.1)

where ω1 and ω2 are weights for the joint distribution. V3D denotes the vertices of the
output mesh.

To further enhance the efficacy of D2A-HMR 2.0, we integrate a substantial volume
of unlabeled data sourced from the Internet to facilitate robust generalization in dynamic
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Figure 6.4: Mechanics of Baseball Pitching

real-world scenarios, as illustrated in Figure 6.3. This augmentation involved the imple-
mentation of a transformer network with pretrained weights initialized using MHFormer
[74]. Specifically, we select high-resolution practice videos from the Internet and introduce
motion blur artifacts. Prior to inducing blur, we use a transformer network to predict its
corresponding 3D poses, leveraging its superior performance with high-resolution data.

6.3.2 Pitch Statistics

The pitch type, a complex interplay of various pitch statistics, ultimately determines the
pitch delivered. This work focuses on estimating crucial kinematically derived pitch statis-
tics such as pitch position, release point, release extension, pitch velocity, and handedness
from the 3D pose data obtained using the D2A-HMR 2.0 model. While factors such as
break and spin rate also influence pitch action [94], this work focuses on these core kine-
matic statistics mentioned above. An illustration of the different steps of baseball pitching
mechanics is shown in Figure 6.4. By analyzing these statistics, we gain valuable insight
into the mechanics of pitch delivery. These pitch statistics combined with kinematic mo-
tion data will contribute significantly to enable the prediction of complex pitch actions.
The 3D kinematic information is fed as input to the pitch statistics component to estimate
the different pitch statistics including pitch position, release point, pitch velocity, release
extension, and handedness.
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Pitch Position

Pitchers utilize two legal pitch position styles: the windup, a full-body motion maximizing
power, and the set/stretch, a quicker, more compact motion sacrificing some velocity for
faster delivery. Mastering these positions allows pitchers to deceive batters by disrupting
their timing and pitch recognition [110]. This work employs a TCN backbone, identical to
the player identification network, for pitch position classification using a sigmoid activation
function. Each video tracklet is fed into the TCN with a sequence length of 100 frames for
classification.

Handedness

Accurate determination of the pitcher’s handedness is critical for effective pitch analysis.
By isolating the throwing hand within each video frame, we can tailor feature extraction to
the pitcher’s specific mechanics. This work utilizes a TCN to estimate handedness. While
the TCN demonstrates effectiveness, simpler methods based on hand appearance analysis
might also be suitable for handedness classification. Regardless of the chosen technique,
identifying handedness allows the analysis pipeline to account for the pitcher’s mechanics,
leading to improved feature extraction and ultimately, more accurate pitch statistics.

Release Point

The release point, defined as the specific location where the pitcher releases the ball from
their hand toward the batter, plays a crucial role in determining both the pitch velocity and
the release extension [130]. It also plays a crucial factor in deciphering tunneled pitchers.
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Figure 6.5: Trajectory of the right wrist joint in 3D space. Illustration of two frames
that correspond to the points (A and B) marked in the trajectory plot that determines the
release point.

Identifying the exact release point can be complex. While wrist kinematics offer valu-
able insights, they may not pinpoint the release point with absolute accuracy. Additionally,
relying solely on peak pitch velocity can be misleading, as it might not always coincide
with the exact moment of release, especially for different pitch types.

Thus, in this work, we propose a method that utilizes wrist kinematics in the x-plane
(lateral movement) as an initial indicator for the release point window. We identify the
extreme coordinates in this plane to establish the maximum and minimum limits of wrist
movement during the throwing motion. Point A, as illustrated in Figure 6.5, corresponds
to the final cocking phase (maximum external rotation of the throwing shoulder). Point
B represents the end of the acceleration phase, potentially including both the ball release
and the initial follow-through.

We propose a weighted approach that combines the information from wrist kinematics
and peak pitch velocity. A weight will be assigned to each factor based on its estimated
confidence scores for the estimated pitcher kinematics. We hypothesize that the true
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ball release point lies within this weighted window centered around Point B. This win-
dow accounts for potential variations in the relationship between peak velocity and the
inaccuracies in the wrist joint trajectory for different pitches.

Pitch Velocity

Pitch velocity, measured in miles per hour, reflects the ball’s speed upon leaving the
pitcher’s hand [40]. This study proposes a method to estimate pitch velocity by ana-
lyzing changes in the throwing hand’s wrist position at the release point identified using
the estimated 3D pose data. Equation (6.2) calculates the angular velocity of the wrist at
release based on the change in arctangent of consecutive wrist coordinates (wx, wy) before
(frame r−1) and at (frame r) the release point. This angular velocity is then converted to
an approximate pitch velocity (vp) by multiplying it by the lever arm length (l) between
the wrist and the elbow joint. The time difference between frames is denoted as δt.

vp = ω ∗ l = {(atan(wr
y, w

r
x)− atan(wr−1

y , wr−1
x )) ∗ δt} ∗ l (6.2)

As mentioned above in Section 6.3.2, we estimate the ball release point by finding the
maximum velocity in a window around Point B using Equation (6.2) which will compute
the pitch velocity.

Release Extension

Release extension, in baseball, refers to the distance a pitcher creates between the pitching
mound and the release point of the ball towards the batter. The release extension helps
to differentiate pitch types, as fastballs typically involve greater extension compared to
breaking balls. It essentially describes how much closer the pitcher gets to the home plate
at the moment of release compared to where they started their throwing motion. The
release extension is mathematically indicated as shown in Equation (6.3).

Extension =
√
(wx − ax)2 + (wy − ay)2 + (wz − az)2 (6.3)

Here, in Equation (6.3), a refers to the position of the pitching leg’s ankle joint. The
pitching ankle joint is chosen since it remains planted on the mound during the pitch set
and the initial part of the delivery.
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6.3.3 Loss Functions

The majority of baseball pitchers are right-handed. A study by Chu et al. [33] found
that only 28.4% of pitchers are left-handed, highlighting a significant class imbalance.
Therefore, we employ a focal loss function to address the issue of class imbalance [78]. This
function assigns greater weight to the minority class (left-handed pitchers) by incorporating
a gamma tuning parameter (initially set to 2). Equation (6.4) presents the loss function
used for estimating both pitch position and handedness.

L(pt) = −αt ∗ (1− pt)
γ ∗ log(pt) (6.4)

where αt and γ are the balancing parameter and sampling focus parameter, respectively.
pt denotes the predicted probability of the true class. The D2A-HMR human model is
trained using the objective mentioned in Equation (6.5).

Lmodel = λRLELRLE + λSMPLLSMPL + λ3DL3D

+ λ2DL2D + λsilhLsilh

(6.5)

where LRLE, LSMPL, L3D, L2D and Lsilh correspond to residual likelihood loss, 3D
vertex loss, regressed 3D loss, reprojected 2D loss and silhouette loss. All λ correspond to
the weights assigned to distribute the importance of each objective. We incorporated an
additional loss function into our D2A-HMR 2.0 as shown in Equation (6.6).

L̂model = Lmodel + λr
3DLr

3D (6.6)

Here, Lr
3D corresponds to the 3D output joints of the regression head of the D2A-HMR

model.

6.4 Experimentation

Implementation Details. The training process is conducted on three NVIDIA A6000
GPUs with 48GB RAM. Adam optimizer with a batch size of 48 with 500 epochs is used
to train the 3D human model. A learning rate of 10−4 with betas of 0.9 and 0.99 is used for
optimization. The TCN model for handedness estimation and pitch position estimation is
trained for 50 and 100 epochs, respectively using one of the three GPUs. The TCN model
trained for player identification was trained for 200 epochs using two GPUs with AdamW
optimizer with a learning rate of 10−2.
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6.4.1 Pitcher Identification

The impact of the pitcher identification task is compared with two temporal networks
(LSTM, transformer with only self-attention blocks) in Table 6.1. Simple baseline tem-
poral networks were used for comparison to validate the effectiveness of pose-based role
classification. Since these are tasks that use distinct player kinematics, complex networks
were not needed.

Table 6.1: Comparison of our model with baseline temporal networks on MLBPitchDB
dataset [16].

Test Accuracy (%) ↑

LSTM 85.55
Transformer 91.11

Ours 96.66

Our approach achieves superior test accuracy compared to both LSTMs and transform-
ers with self-attention blocks, as shown in Table 6.1. Specifically, we observe an improve-
ment of 11.11% and 5.55% in accuracy relative to LSTMs and transformers, respectively.

6.4.2 3D Human Modeling

Depth Encoder. Experimentation with different depth encoders including AdaBin [10],
ZoeDepth [11], DINOv1 [21], DINOv2 [97] and Depth Anything [135] is done in Table
6.2. The D2A-HMR model proposed in [16] utilizes DINOv2 [97] as its depth encoder for
human body modeling.

Table 6.2: Impact on different depth encoders for D2A-HMR evaluated on 3DPW dataset.

mPJPE (mm) ↓ PA-mPJPE (mm) ↓

Bhat et al. [10] 90.3 55.4
Bhat et al. [11] 87.8 53.3
Caron et al. [21] 83.1 50.6
Oquab et al. [97] 80.5 48.4

Yang et al. [135] 78.7 46.9
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Our findings demonstrate that employing Depth Anything [135] as the depth encoder
to generate pseudo-depth leads to improvements of 1.8mm and 1.5mm in mPJPE and
PA-mPJPE, respectively. This can be attributed to the utilization of a significantly larger
dataset of unlabeled images allowing the model to learn more comprehensive visual repre-
sentations. Qualitative comparison of the various monocular depth estimation techniques
on the MLBPitchDB dataset is illustrated in Figure 6.6.
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Input [10] [11] [97] [135]

Figure 6.6: Qualitative results. Qualitative comparison of the various depth estimation
techniques in MLBPitchDB baseball dataset.
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Input Pseudo-Depth D2A-HMR Ours

Figure 6.7: Qualitative results. Qualitative comparison of the pitcher’s mesh alignment
with the input image using our D2A-HMR 2.0 model.

Regression Heads. We evaluate the performance of two distinct regressor head archi-
tectures within our model. The first design directly regresses the vertex coordinates of the
transformer output tokens. In contrast, the second approach predicts both the vertices
and the 3D pose of the players. A detailed comparison of their performance is presented
in Table 6.3.
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Table 6.3: Ablation study on different regressor heads for D2A-HMR evaluated on 3DPW
dataset.

mPJPE (mm) ↓ PA-mPJPE (mm) ↓

w/ vertex only 80.5 48.4
w/ vertex+joints 78.7 46.9

As shown in Table 6.3, our model demonstrates superior performance when incorpo-
rating both the player’s vertices and 3D joints during the regression process. This is likely
due to the additional information provided by the joints, which helps the model refine the
predicted 3D pose and achieve more accurate alignment. Furthermore, the model opti-
mizes the output 3D joints by minimizing the difference between them and the ground
truth 3D poses, further contributing to the overall improvement in performance. Figure
6.7 demonstrates the superior alignment ability of D2A-HMR 2.0 from a given input image
when compared with existing SOTA HMR techniques.

Pseudo-ground truth Data. The impact of leveraging additional pseudo-ground truth
pose data on the training process of the D2A-HMR 2.0 model is showcased in Table 6.4.
Specifically, pseudo 2D and 3D pose data obtained from HRNet [117] and MHFormer [74],
respectively, are used as ground truth for training the HMR model.

Table 6.4: Ablation study on utilizing Pseudo-ground truth data.

mPJPE (mm) ↓ PA-mPJPE (mm) ↓

w/o Pseudo-ground truth data 79.1 47.4
w/ Pseudo-ground truth data 78.7 46.9

Our D2A-HMR 2.0 model demonstrates an improvement in performance of recover-
ing the 3D human mesh by incorporating additional pseudo-ground truth data from the
internet, as shown in Table 6.4.

6.4.3 Pitch Statistics

Table 6.5 shows the pitch statistics from the broadcast videos. TCN with five TConv blocks
is utilized to predict handedness and pitch position from the kinematic motion sequence
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Table 6.5: Performance of our pitch statistics module on different pitch metrics including
pitch handedness, pitch position, release point, pitch velocity, and release extension in the
test dataset compared against baseline temporal networks.

(a) Handedness

A0 ↑ F1 ↑ Prec. ↑

LSTM 085.0 085.7 090.0
Ours (TCN) 100.0 100.0 100.0

(b) Pitch Position

Acc. ↑ F1 ↑ Prec. ↑

LSTM 81.3 82.5 85.0
Ours (TCN) 97.5 97.4 95.0

(c) Release Point

A1 ↑ A2 ↑ A5 ↑

LSTM 31.3 46.4 63.5
TCN 43.4 51.5 77.6
Ours 80.8 85.8 97.9

(d) Pitch Velocity

A1% ↑ A2% ↑ A5% ↑

LSTM 05.0 13.1 22.2
TCN 10.1 18.1 48.4
Ours 43.4 68.6 94.9

(e) Release Extension

A5% ↑ A8% ↑ A10% ↑

LSTM 04.0 07.0 11.1
TCN 14.1 19.1 25.2
Ours 24.2 31.3 37.3

of the pitcher. The ball release point is extracted using heuristics from the trajectory
of the wrist position of the pitcher. The pitch velocity and release extension are then
computed using mathematical functions that utilize ball release point and kinematic pose
information.

Table 6.5a demonstrates that the TCN model achieves perfect accuracy (100%) in clas-
sifying the handedness, without misclassifications for right-handed or left-handed pitchers.
The model demonstrates impressive performance in classifying pitch position, correctly
identifying 95% of the stretch deliveries and 100% of windup deliveries as shown in Table
6.5b. The misclassification rate is low, with only 5% of stretch deliveries misclassified as
windup, and no misclassification observed for windup deliveries.

The validity of the approach adapted to estimate the release point is examined and
compared to alternative methods in Table 6.5c. The table shows that directly inferring
the release point from a temporal network tends to perform poorly. Ax denotes the ac-
curacy with x the number of frames as a margin in the table. Table 6.5d shows that our
method estimates pitch velocity with superior performance compared to existing temporal
networks. Ax% in Table 6.5d denotes the accuracy with x% as the margin. Finally, Table
6.5e presents the superior performance for estimating release extension. It can also be
improved by studying the pitching stride length which is the distance covered between the
spot where one foot hits the ground and the next time the same foot hits the ground again
[40]. Our method directly utilizes the release point and 3D pose information to calculate
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the extension, achieving accurate results compared to the baseline networks.

Figure 6.8: Qualitative results. Performance of the PitcherNet system in capturing
various pitch statistics from the player tracklets. Here, Pred. denotes the prediction from
the 3D pose information and GT denotes the ground truth game data.

The results provided in Figure 6.8 highlight the qualitative performance of the Pitch-
erNet system in the MLBPitchDB dataset [16]. These visualizations underscore the effec-
tiveness and robustness of our system in achieving accurate alignment with input pitch
tracklets.

6.5 Summary

In this chapter, we introduce PitcherNet, an end-to-end deep learning system for kinematic-
driven pitch analysis in baseball sports through robust 3D human modeling from broadcast
videos. By overcoming challenges such as motion blur in low-resolution feeds, PitcherNet
accurately identifies a range of pitch statistics, including pitch position, release point, pitch
velocity, release extension, and pitcher handedness. This empowers players, coaches, and
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fans to gain deeper insights into the technical nuances of pitching and unlock strategic ad-
vantages. Additionally, decoupling action from tracklets paves the way for reliable player
identification, which holds significant potential for sports analytics and performance eval-
uation.
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Chapter 7

Conclusion

This dissertation proposes a novel automated system that analyzes a pitcher’s pose directly
from broadcast videos. This system goes beyond simply identifying the pose; it extracts
valuable pitch statistics derived from the pitcher’s kinematic motion. A key innovation
lies in the robustness of the underlying 3D human model. Unlike traditional methods, this
model is designed to handle the challenges inherent in broadcast videos, including motion
blur, occlusion, and low resolution. This enhanced robustness translates to reliable and
accurate estimation of pitch statistics, enabling a comprehensive understanding of pitching
mechanics in real-time.

The effectiveness of the proposed framework is validated through extensive experimen-
tation. The D2A-HMR model demonstrates SOTA performance on various benchmark
datasets, showcasing its ability to handle OOD data reliably. Furthermore, experiments
confirm that PitcherNet’s pitch analysis surpasses existing methods. Additionally, the fo-
cused augmentation strategy demonstrably improves the performance of existing human
pose estimation models against motion blur effects. Finally, experiments validate the ro-
bustness of the role classification network used within PitcherNet for identifying pitchers
within the broader video frame.

These combined achievements contribute significantly to the field of baseball analytics
by enabling accurate and real-time analysis of pitching mechanics from broadcast video.
The remainder of this chapter explores future research directions, the broader applicability
of this work beyond baseball, and the overall impact of the research.
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7.1 Potential for Future Research

The research presented in this dissertation provides a basis for future work in baseball
sports analytics. Here are some exciting avenues for future work that can build upon the
foundation laid by this dissertation:

1. Advanced Biomechanical Analysis: Investigation on how the data collected from
the proposed system can identify potential overuse, injuries or develop personalized
training programs to optimize mechanics and improve pitching efficiency.

2. Multi-Camera Integration: Incorporating data from multiple cameras to improve
the accuracy and robustness of the 3D human model, especially when dealing with
occlusions.

3. Generalization to Other Sports: Exploration of generalizing the proposed system
for broader applicability in the sports domain, specifically in sports with similar
throwing mechanics, such as cricket or javelin throw.

4. Extended Pose Estimation: Extending the human modeling technique to accu-
rately include the fingers using techniques such as hand Model with Articulated and
Non-rigid defOrmations (MANO) to predict the type of grip used for the pitch and
the spin rate of the pitch.

5. Enhanced Robustness Against Motion Blur: Exploration of Generative Ad-
versarial Networks (GANs) or blur compensation strategies or explicitly learning the
motion representation to handle extreme blur conditions.

7.2 Applicability

The research presented in this thesis, focusing on 3D human modeling, pose estimation, and
analysis in the context of baseball, has yielded a practical solution with broad applicability
beyond the realm of sports. Our proposed technique demonstrates remarkable robustness
in capturing accurate poses despite the low resolution, motion blur, and occlusion prevalent
in broadcast videos. This paves the way for the direct application of this work to analyze
the movements of athletes captured in broadcast videos across a range of sports.

Beyond the immediate benefits of these works as detailed in Section 1.2, this work
has the potential to significantly impact other fields that require accurate information on
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human movement. Specifically, in the healthcare sector, the proposed 3D human model can
be utilized to analyze patient movement patterns (gait abnormalities, recovery progress)
during physical therapy and rehabilitation. The application can further be extended to
security and surveillance to detect suspicious activity based on gait patterns or specific
gestures.

7.3 Impact

This dissertation presents several significant contributions that advance the field of 3D
human modeling and its application to baseball analytics. A key contribution is the devel-
opment of a novel framework called D2A-HMR, designed to estimate accurate 3D human
models from broadcast video images. D2A-HMR addresses the challenge of OOD poses by
incorporating both distribution awareness and depth information, leading to generalizable
models that perform well even for poses not explicitly included in the training data.

Furthermore, this work introduces a focused augmentation strategy specifically designed
to address the issue of motion blur, a prevalent challenge in broadcast videos. This strategy
tackles a major hurdle in pose estimation by forcing the model to learn to handle blurry
frames effectively.

To demonstrate the practical application of these advances, this dissertation introduces
PitcherNet– a novel system built upon D2A-HMR and the motion blur augmentation strat-
egy. PitcherNet leverages the robust 3D human models generated by D2A-HMR to analyze
baseball pitching mechanics directly from broadcast video footage. The system extracts
accurate 3D pose information and utilizes it to calculate real-time pitch statistics. Addi-
tionally, PitcherNet proposes a role classification network, designed to decouple actions,
enabling reliable pitcher identification within the broader broadcast video frame.
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