Robust 3D Human Modeling for Baseball Broadcast Analysis

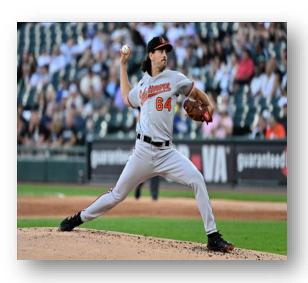
Jerrin Bright

MASc Graduate Student

Principal Investigator: Prof. John Zelek

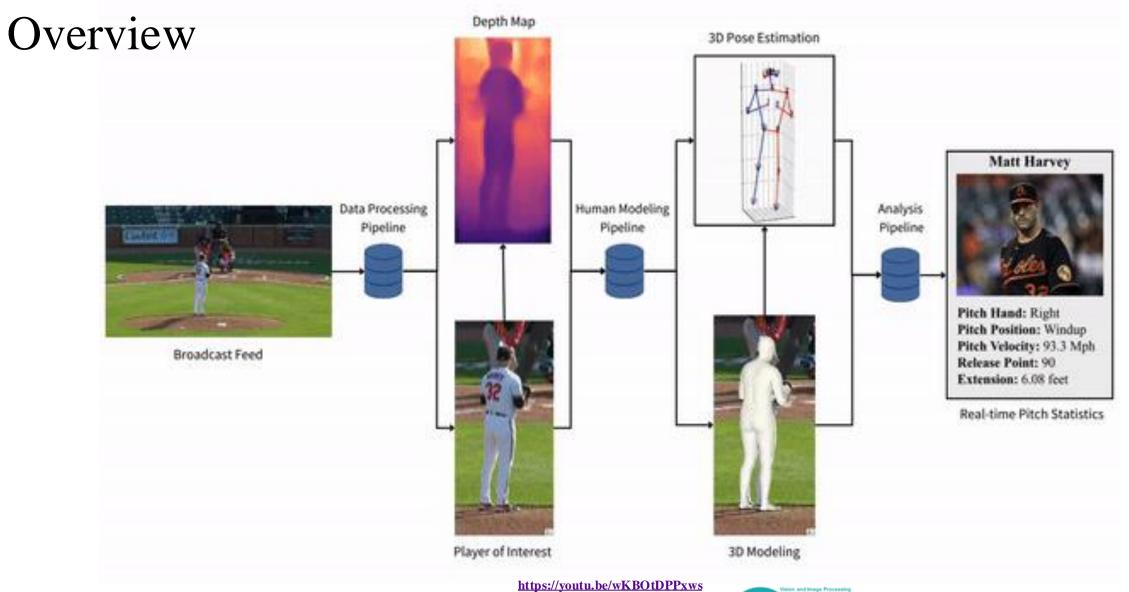
Department of Systems Design Engineering University of Waterloo, Waterloo, ON, Canada

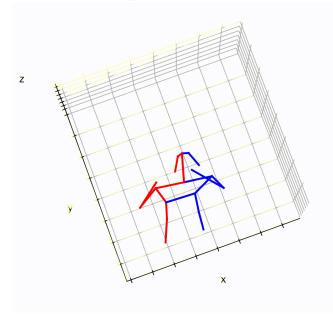
Date: Friday, April 26th, 2024



Motivation

• Quantitative performance from a single camera (smart phone) from the stands

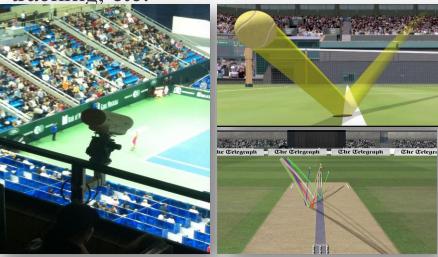


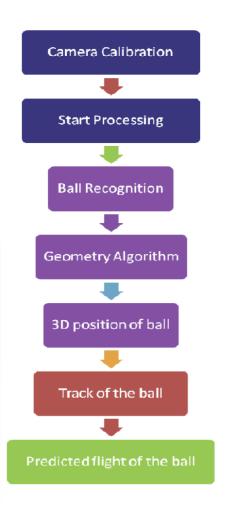


Dataset Overview

What we have?

- 1000+ games
- 3D Hawk-Eye pose data
- Various pitch metrics

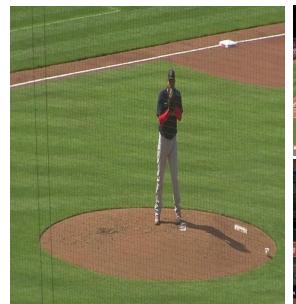



What is Hawk-Eye Camera System?

 Triangulation with many cameras around the playing area

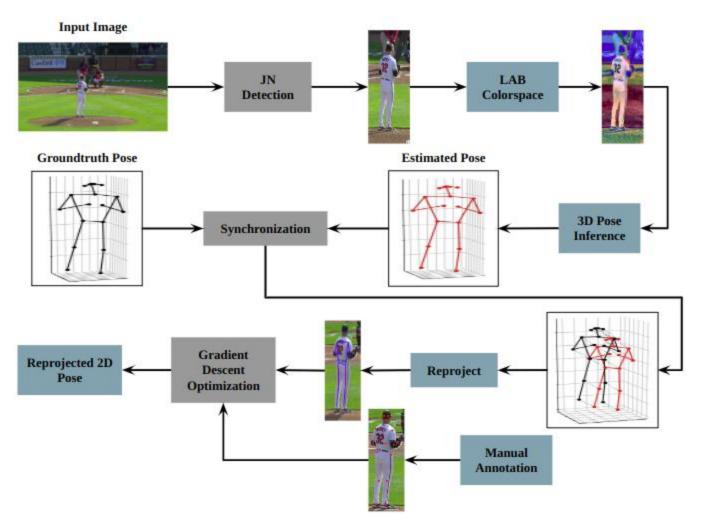
Applications include pose estimation,

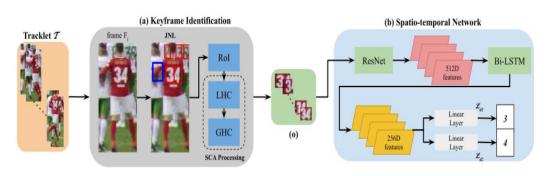
tracking, etc.



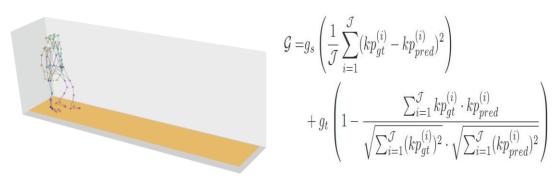
Dataset Challenges

- Multiview unsynchronized data (alignment and sampling rate)
- No 2D groundtruth pose
- No Hawk-Eye camera parameters





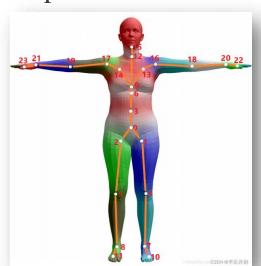
Dataset Processing

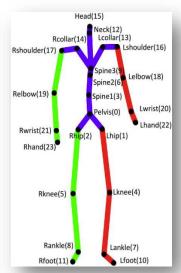


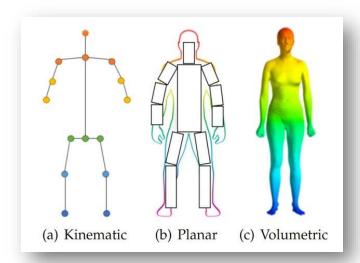
Architecture of the method adapted to solve the issues with dataset from behind-the-pitcher viewpoint

Jersey Number Identification

Data Synchronization

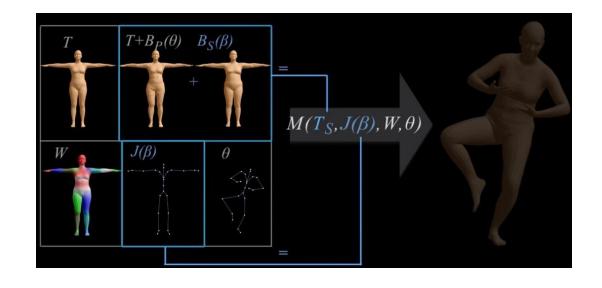

6

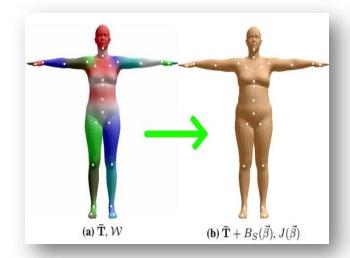


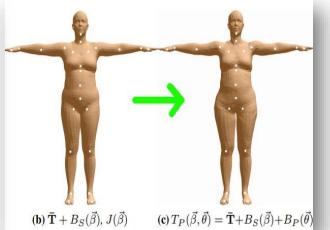

Background

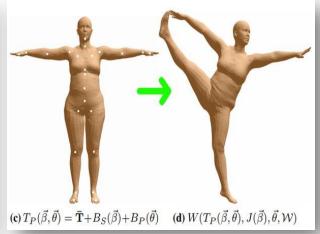
3D Human Modeling - SMPL

- Skinned Multi-Person Linear model^[1].
- 72 joint and 10 shape parameters -> 6890 vertices.
- Learns pose from 1700 3D scans with 44 subjects.
- Learns shape from 4000 3D scans from Ceaser Dataset.

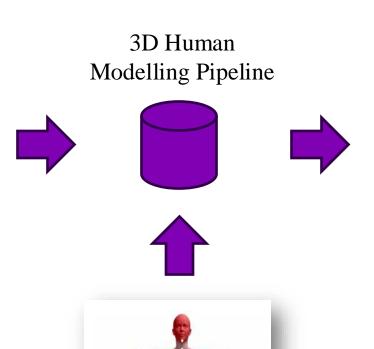



Credits:


Background


3D Human Modeling - SMPL

- Shape Blended Shape
- Pose Blended Shape
- Skinning

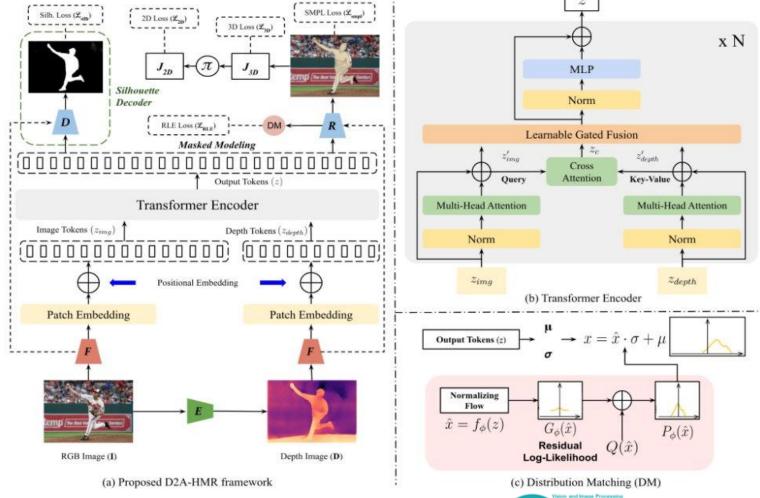


How can we estimate robust 3D models?

Challenges

Motion Blur

Self-Occlusion



Human Mesh Recovery

Jerrin Bright, Bavesh Balaji, Harish Prakash, Yuhao Chen, David A Clausi, and John Zelek. 2024. Distribution and Depth-Aware Transformers for 3D Human Mesh Recovery. In 21st Conference

on Robots and Vision - ORAL

Human Mesh Recovery

Jerrin Bright, Bavesh Balaji, Harish Prakash, Yuhao Chen, David A Clausi, and John Zelek. 2024. Distribution and Depth-Aware Transformers for 3D Human Mesh Recovery. In 21st Conference on Robots and Vision - ORAL

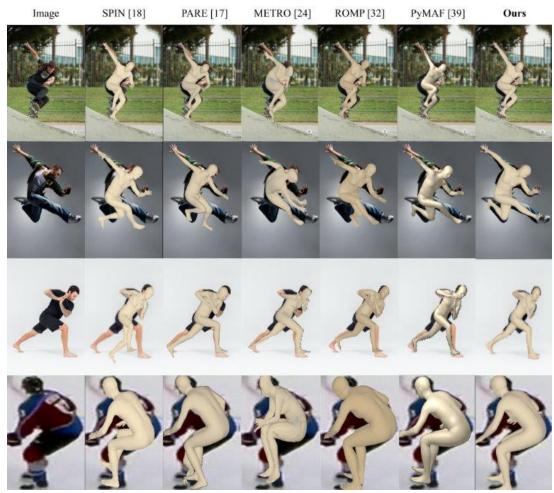
Quantitative on SOTA datasets

	Method	Hun	nan3.6M	3DPW				
		mPJPE ↓	PA-mPJPE ↓	mPVE ↓	mPJPE ↓	PA-mPJPE ↓		
Video	HMMR [5]	-	58.1	139.3	116.5	72.6		
	TCMR [33]	62.3	41.1	111.5	95.0	55.8		
	VIBE [9]	65.6	41.4	99.1	93.5	56.5		
	HMR [4]	88.0	56.8	-	130.0	81.3		
Model-based	SPEC [34]	-	-	118.5	96.5	53.2		
	SPIN [10]	62.5	41.1	116.4	96.9	59.2		
	PyMAF [35]	57.7	40.5	110.1	92.8	58.9		
po	ROMP [36]	-	-	105.6	89.3	53.5		
M	HMR-EFT [37]	63.2	43.8	98.7	85.1	52.2		
	PARE [11]	76.8	50.6	97.9	82.0	50.9		
4	ProHMR [12]	-	41.2	109.6	95.1	59.5		
Ee	I2LMeshNet [22]	55.7	41.1	_	93.2	57.7		
J-E	Pose2Mesh [7]	64.9	47.0	_	89.2	58.9		
Model-free	METRO [8]	<u>54.0</u>	<u>36.7</u>	88.2	77.1	47.9		
Mc	D2A-HMR (Ours)	53.8	36.2	88.4	<u>80.5</u>	48.4		

Quantitative on MLBPitchDB dataset

Method	Acc. ↑	mPJPE \downarrow
HMR [8]	65.9	61.3
SPIN [10]	84.7	32.1
ProHMR [8]	76.1	48.2
ROMP [8]	77.4	48.9
METRO [8]	81.5	37.8
PARE [11]	<u>84.0</u>	<u>33.7</u>
D2A-HMR (Ours)	87.9	30.6

Ablation of depth and distribution modules

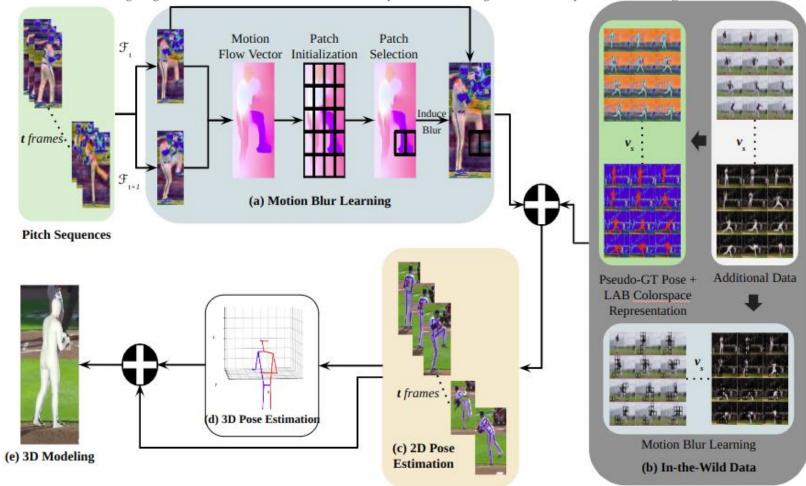

Depth	Dist.	mPJPE \downarrow	PA-mPJPE ↓
1		92.7	61.8
	✓	90.0	56.9
✓	✓	80.5	48.4

Ablation of silhouette and masked modeling modules

Silhouette	Masked Modeling	mPJPE \downarrow	PA-mPJPE
√		89.5	62.2
	✓	84.7	51.4
✓	✓	80.5	48.4

Human Mesh Recovery

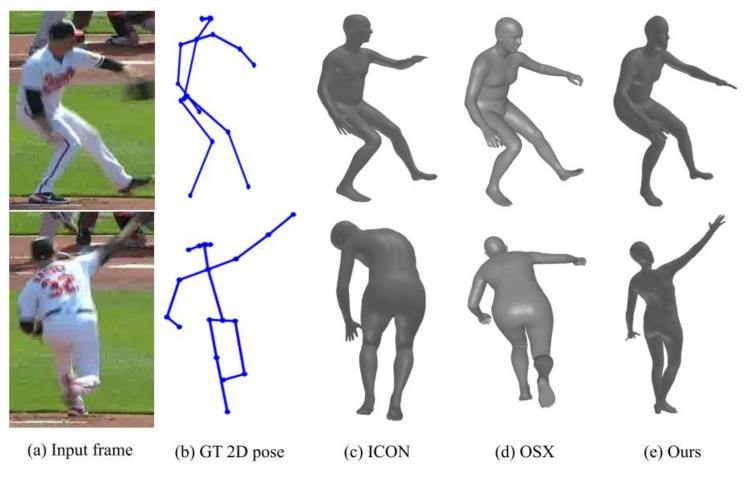
Jerrin Bright, Bavesh Balaji, Harish Prakash, Yuhao Chen, David A Clausi, and John Zelek. 2024. Distribution and Depth-Aware Transformers for 3D Human Mesh Recovery. In 21st Conference on Robots and Vision - ORAL



Mitigating Motion Blur

Jerrin Bright, Yuhao Chen, and John Zelek. 2023. Mitigating Motion Blur for Robust 3D Baseball Player Pose Modeling for Pitch Analysis. In Proceedings of the 6th International Workshop on Multimedia

Content Analysis in Sports.



Architecture of the algorithm adapted to mitigate motion blur

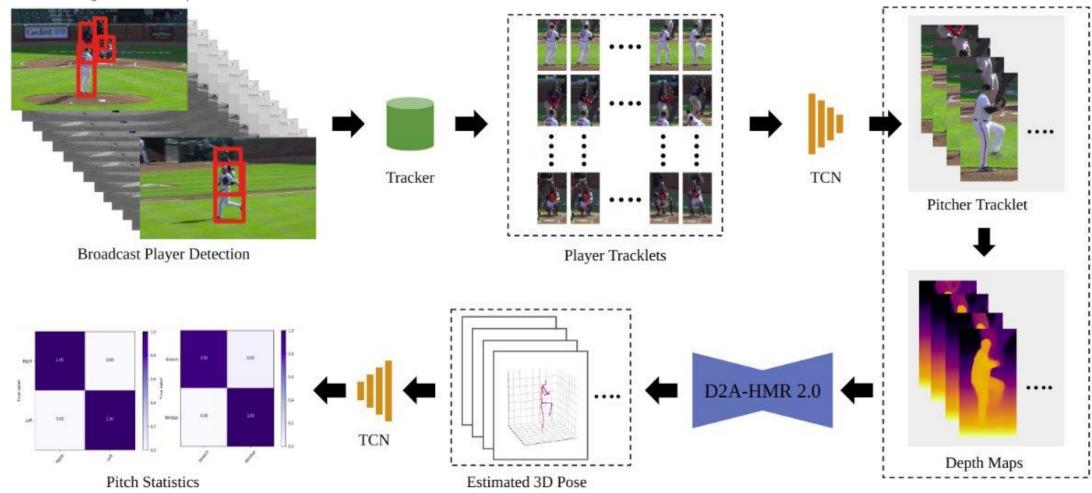
Mitigating Motion Blur

Jerrin Bright, Yuhao Chen, and John Zelek. 2023. Mitigating Motion Blur for Robust 3D Baseball Player Pose Modeling for Pitch Analysis. In Proceedings of the 6th International Workshop on Multimedia Content Analysis in Sports.

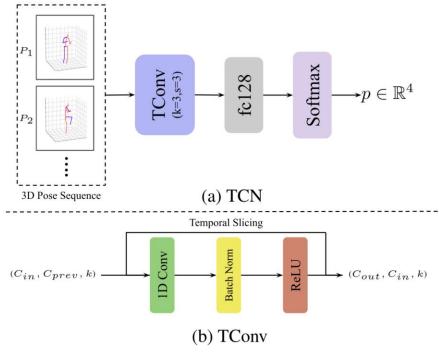
Performance on SOTA Techniques

Method	Type	MB	Loss
Xu et al.	Heatmap		1.37
Ke et al.	Heatmap		1.46
Panteleris et al.	Regressor	•	
Li et al.	Heatmap		1.83
Mao et al.	Regression		1.26
Xu et al.	Heatmap	/	1.17 (+0.20)
Ke et al.	Heatmap	1	1.21 (+0.25)
Panteleris et al.	Regressor	1	0.55 (+0.60)
Li et al.	Heatmap	1	1.46 (+0.37)
Mao et al.	Regressor	1	0.61 (+0.65)

Impact of different modules


impact of different modules							
Base Model	ItW	MB	2D Loss	3D Loss			
✓			1.05	1.93			
✓	1		0.88	1.61			
✓		✓	0.55	1.47			
✓	✓	✓	0.48	1.23			

FACULTY OF ENGINEERING


Pitch Analysis

Jerrin Bright, Bavesh Balaji, Yuhao Chen, David A Clausi, John Zelek. 2024. PitcherNet: Powering the Moneyball Evolution in Baseball Video Analytics. In IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops - ORAL

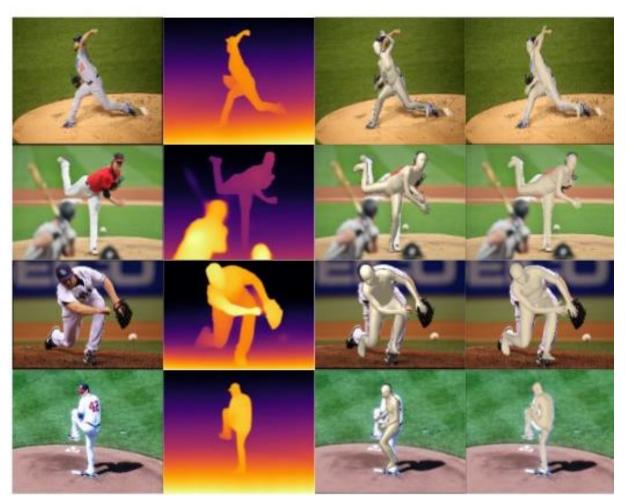
Pitch Analysis

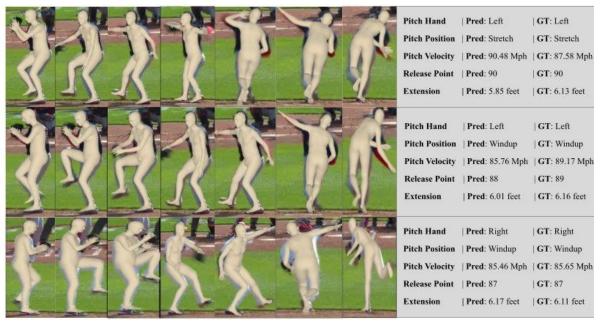
Jerrin Bright, Bavesh Balaji, Yuhao Chen, David A Clausi, John Zelek. 2024. PitcherNet: Powering the Moneyball Evolution in Baseball Video Analytics. In IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops - ORAL

Overview of the Temporal Convolutional Network

Performance of our pitch statistics modules

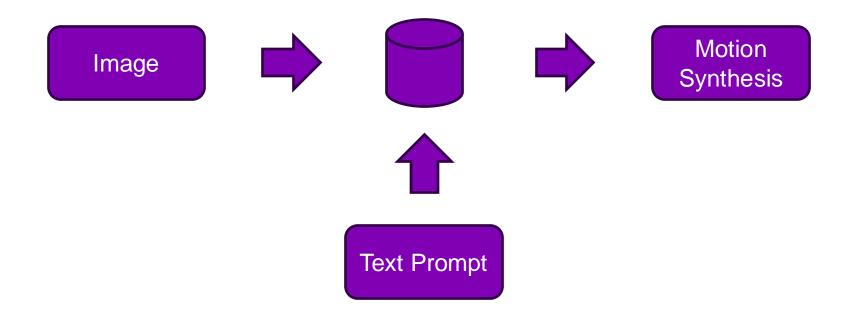
(a) Handedness						(b) Pitch Position					
	Acci	uracy ↑	F1 Score ↑	Precisio	<u></u>		Accuracy ↑	F1 Sco	re ↑	Precision ↑	
LSTM Ours (TCN)			85.7 100.0			LSTM 81.3 Ours (TCN) 97.5				85.0 95.0	
(c) Release Point				(d) Pitch	Velocity			(e) Releas	e Extens	sion	
$A_1 \uparrow$	$A_2 \uparrow$	$A_5 \uparrow$		$A_{1\%}\uparrow$	$A_{2\%}\uparrow$	$A_{5\%}\uparrow$		$A_{5\%}\uparrow$	$A_{8\%}$	\uparrow $A_{10\%} \uparrow$	
31.3 43.4 80.8	46.4 51.5 85.8	63.5 77.6 97.9	LSTM TCN Ours	5.1 10.1 43.4	13.1 18.1 68.6	22.2 48.4 94.9	LSTM TCN Ours	4.0 14.1 24.2	7.1 19.1 31.3		
	(c) Release $A_1 \uparrow$ 31.3 43.4	According to Acco	Accuracy \uparrow M 85.0 S (TCN) 100.0 (c) Release Point $A_1 \uparrow A_2 \uparrow A_5 \uparrow$ $31.3 46.4 63.5$ $43.4 51.5 77.6$	Accuracy \uparrow F1 Score \uparrow M 85.0 85.7 100.0 100.0 (c) Release Point $A_1 \uparrow$ $A_2 \uparrow$ $A_5 \uparrow$ 31.3 46.4 63.5 LSTM 43.4 51.5 77.6 TCN	Accuracy \uparrow F1 Score \uparrow Precision M 85.0 85.7 90.0 S (TCN) 100.0 100.0 100.0 (c) Release Point (d) Pitch $A_1 \uparrow$ $A_2 \uparrow$ $A_5 \uparrow$ 31.3 46.4 63.5 43.4 51.5 77.6 TCN 10.1	Accuracy \uparrow F1 Score \uparrow Precision \uparrow M 85.0 85.7 90.0 LS S (TCN) 100.0 100.0 100.0 Ou (c) Release Point (d) Pitch Velocity $A_{1} \uparrow$ $A_{2} \uparrow$ $A_{1\%} \uparrow$ $A_{2\%} \uparrow$ 31.3 46.4 63.5 LSTM 5.1 13.1 43.4 51.5 77.6 TCN 10.1 18.1	Accuracy \uparrow F1 Score \uparrow Precision \uparrow M 85.0 85.7 90.0 LSTM S (TCN) 100.0 100.0 0urs (TCN) (c) Release Point (d) Pitch Velocity $A_1 \uparrow$ $A_2 \uparrow$ $A_5 \uparrow$ 31.3 46.4 63.5 LSTM 5.1 13.1 22.2 43.4 51.5 77.6 TCN 10.1 18.1 48.4	Accuracy \uparrow F1 Score \uparrow Precision \uparrow Accuracy \uparrow M 85.0 85.7 90.0 LSTM 81.3 S (TCN) 100.0 100.0 Ours (TCN) 97.5 (c) Release Point (d) Pitch Velocity A1% \uparrow A2% \uparrow A5% \uparrow 31.3 46.4 63.5 LSTM 5.1 13.1 22.2 LSTM 43.4 51.5 77.6 TCN 10.1 18.1 48.4 TCN	Accuracy \uparrow F1 Score \uparrow Precision \uparrow Accuracy \uparrow F1 Sco M 85.0 85.7 90.0 LSTM 81.3 82.5 S (TCN) 100.0 100.0 Ours (TCN) 97.5 97.4 (c) Release Point (d) Pitch Velocity (e) Release $A_1 \uparrow$ $A_2 \uparrow$ $A_5 \uparrow$ $A_5 \% \uparrow$ 31.3 46.4 63.5 LSTM 5.1 13.1 22.2 LSTM 4.0 43.4 51.5 77.6 TCN 10.1 18.1 48.4 TCN 14.1	Accuracy \uparrow F1 Score \uparrow Precision \uparrow Accuracy \uparrow F1 Score \uparrow M 85.0 85.7 90.0 LSTM 81.3 82.5 S (TCN) 100.0 100.0 Ours (TCN) 97.5 97.4 (c) Release Point (d) Pitch Velocity (e) Release Extens $A_1 \uparrow$ $A_2 \uparrow$ $A_5 \uparrow$ $A_5 \%$ $A_5 \%$ $A_8 \%$ 31.3 46.4 63.5 LSTM 5.1 13.1 22.2 LSTM 4.0 7.1 43.4 51.5 77.6 TCN 10.1 18.1 48.4 TCN 14.1 19.1	


Comparison of the player identification techniques


	Test Accuracy ↑
LSTM	85.55
Transformer	91.11
Ours	96.66

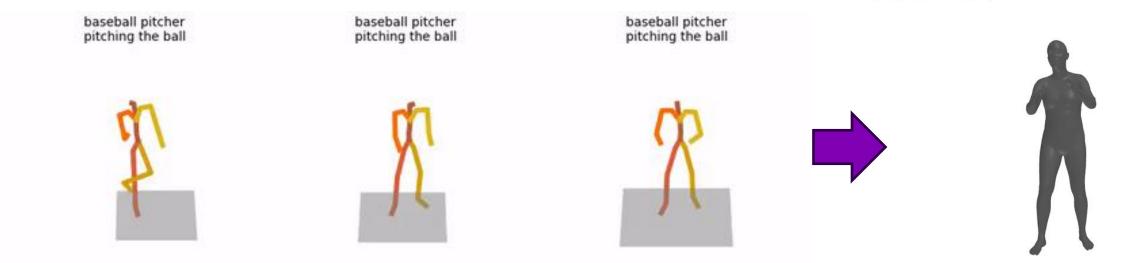
Pitch Analysis

Jerrin Bright, Bavesh Balaji, Yuhao Chen, David A Clausi, John Zelek. 2024. PitcherNet: Powering the Moneyball Evolution in Baseball Video Analytics. In IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops - ORAL



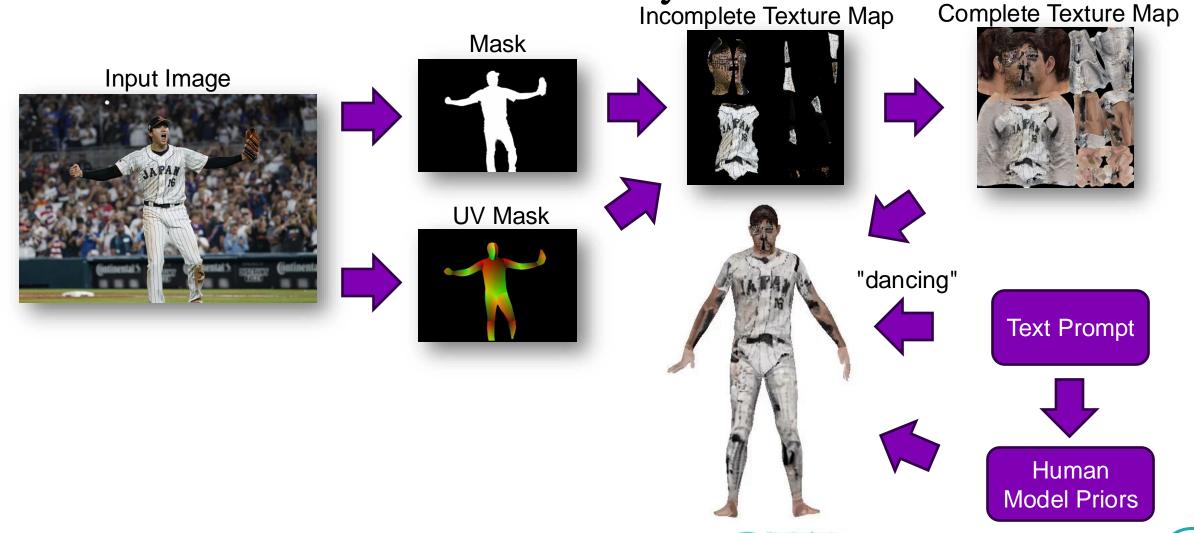
How to generalize for Multiview data?

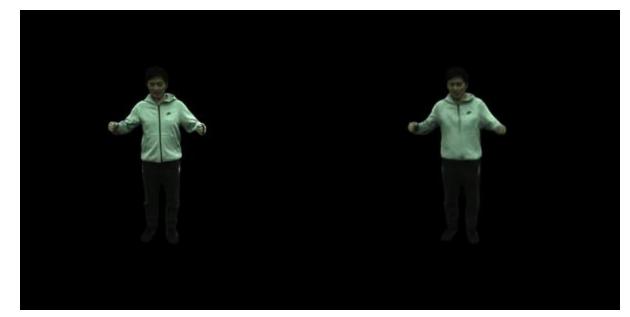

Objective: Synthesis Realistic 3D Human and Motion



Realistic 3D Human and Motion Synthesis

Text-driven Motion Synthesis


"How to add texture to the human model?"


Realistic 3D Human and Motion Synthesis



Realistic 3D Human and Motion Synthesis

Gaussian Splatting

GT Prediction GT Prediction

zju_mocap dataset: test #387

zju_mocap dataset: test #377

Summary

MAIN CONTRIBUTIONS

- Reliable pitch analysis driven by player kinematics and human model priors.
- Generalizable 3D human modeling with depth and distribution modeling.
- Realistic 3D human and motion generation with text guidance.

CURRENT CHALLENGES

- Severe motion blur
- 2D pose performance

TODO

- Motion representation
- One-stage optimization
- Diffusion-priors

Thank you!

Supported by:

